E[coluns:

30K 4
HIGH FREQUENCY TRANSMITTER

INSTRUCTION BOOK

틷LNNㅇ

30K 4

HIGH FREQUENCY TRANSMITTER

INSTRUCTION BOOK

for

MODEL 30K-4 HIGH FREQUENCY TRANSMITTER

MANUFACTURED BY
 COLLINS RADIO COMPANY, CEDAR RAPIDS, IOWA

520944000
July 15, 1953

GUARANTEE

The equipment described herein is sold under the following guarantee:
Collins agrees to repair or replace, without charge, any equipment, parts, or accessories which are defective as to design, workmanship or material, and which are returned to Collins at its factory, transportation prepald, provided
(a) Notice of the claimed defect is given Collins within one (1) year from date of delivery and goods are returned in accordance with Collins' instructions.
(b) Equipment, accessories, tubes, and batteries not manufactured by Collins or from Collins' designs are subject to only such adjustments as Collins may obtain from the supplier thereof.
(c) No equipment or accessory shall be deemed to be defective if, due to exposure or excessive molsture in the atmosphere or otherwise after dellvery, it shall fall to cperate in a normal or proper manner.

Collins further guarantees that any radio transmitter described herein will dellver full radio frequency power output at the antenna lead when connetted to a suitable load, but such guarantee shall not be construed as a guarantee of any definite coverage or range of said apparatus.

The guarantee of these paragraphs is void if equipment is altered or repaired by others than Collins or its authorized service center.

No other warranties, expressed or implied, shall be applicable to any equipment sold hereunder, and the loregoing shall constltute the Buyer's sole right and remedy under the agreements in this paragraph contained. In no event shall Collins have any liability for consequentlal damages, or for loss, damage or expense directly or Indirectly arising from the use of the products, or any Inability to use them elther separately or in combination with other equipment or materials, or from any other cause.

HOW TO RETURN MATERIAL OR EQUIPMENT. I, for any reason, you should wish to return material or equipment, whether under the guarantee or otherwise, you should notify us, giving full particulars including the details listed below, insofar as applicable. If the item is thought to be defective, such notice must give full information as to nature of defect and identification (including part number if possible) of part considered defective. (With respect to tubes we suggest that your adjustments can be speeded up if you give notice of defect directly to the tube manufacturer.) Upon receipt of such notice, Collins will promptly advise you respecting the return. Fallure to secure our advice prior to the forwarding of the goods orfailure to provide full particulars may cause unnecessary delay in handling of your returned merchandise.

ADDRESS:

Collins Radio Company Sales Service Department Cedar Rapids, lowa

INFORMATION NEEDED:

(A) Type number, name, and serlal number of equipment
(B) Date of delivery of equipment
(C) Date placed in service
(D) Number of hours of service
(E) Nature of trouble
(F) Cause of trouble if known
(G) Part number (9 or 10 digit number) and name of part thought to be causing trouble
(H) Item or symbol number of same obtained from parts list or schematic
(I) Collins' number (and name) of unit sub-assemblies involved in trouble
(J) Remarks

HOW TO ORDER REPLACEMENT PARTS.
When ordering replacement parts, you should direct your order as indicated below and furnish the following nformation insoiar as applicable. To enable us to give you better replacement service, please be sure to give 18 complete information.

ADDRESS:

Collins Radio Company Sales Service Department Cedar Rapids, Iowa

INFORMATION NEEDED:

(A) Quantity required
(B) Collins' part number (9 or 10 digit number) and description
(C) Item or symbol number obtained from parts list or schematic
(D) Collins' type number, name, and serial number of princtpal equipment
(E) Unlt sub-assembly number (where applicable)

SECTION 1 - GENERAL DESCRIPTION

1.1. General 1-1
1.2. Reference Data. 1-2
1.2.1. Overall Dimensions and Weights 1-2
1.2.2. Frequency Range 1-3
1.2.3. Number of Channels 1-3
1.2.4. Frequency Control. 1-3
1.2.5. Types of Emission. 1-3
1.2.6. Nominal Carrier Output 1-3
1:2.7. Audio Frequency Response 1-3
1.2.8. Audio Frequency Bistortion 1-3
1.2.9. Input Impedance (Microphone) 1-3
1.2.10. Altitude for Rated Voltage 1-3
1.2.11. Power Requirements 1-3
1.2.12. Power Source 1-3
1.3. Vacuum Tube Complement. 1-3
1.3.1. Type 30K-4.Transmitter 1-3
1.3.2. Type 177L-2 Remote Control Unit. 1-3
SECTION 2 - INSTALLATION
2.1. Installation. 2-1
2.1.2. Preliminary. 2-1
2.1.3. Installation Procedure 2-1
SECTION 3 - ADJUSTMENT AND OPERATION
3.1. Qeneral 3-1
3.1.1. Filament, on-off Switch. -3-1
3.1.2. Plate, On-off Switch 3-1
3.1.3. Fil Voltage Adjustment 3-1
3.1.4. Plate Voltage Control. 3-1
3.1.5. Phone CW Selector Switch 3-1
3.1.6. Test Key 3-2
3.1.7. Channel Switch 3-2
3.1.8. Local-Remote Control Switch. 3-2
3.1.9. Osc Plate Tuning -3-2
3.1.10. Mult Plate Tuning. 3-2
3.1.11. Ant Tuning \& Loading -3-2
3.1.12. PA Plate Tuning. -3-2
3.1.13. Audio Gain -3-?
3.2. Energizing the Equipment for the First Time 3-2
3.2.1. Precautions. 3-2
Paragraph Pare
SECTION 3 - ADJUSTMENT AND OPERATIOH (CONT.)
3.3. Adjustment Procedure 3-2
3.3.1. RF Adjustments 3-2
3.3.2. Voice Operation Adjustments 3-4
3.4. Typical Meter Readings 3-6
3.4.1. Phone Emission. 3-6
3.4.2. CW Emission 3-6
SECTION 4 - CIRCUIT DESCRTPTION
4.1. General. 4-1
4.2. Primary Power Circuits 4-1
4.2.1. Rectifier Power System. 4-1
4.3. Carrier Control Circuits 4-2
4.4. RF Circuits. 4-2
4.4.1. Oscillator. 4-2
4.4.2. Multiplier. 4-2
4.4.3. RF Power Amplifier 4-2
4.4.4. RF Output Circuit 4-2
4.5. Audio Circuits 4-2
4.5.1. General 4-2
4.5.2. Speech Amplifier Circuits 4-3
4.5.3. Modulator Driver Circuits 4-3
4.5.4. Modulator Circuit 4-3
SECTION 5-MAINTENANCE
5.1. Routine Inspection Schedules 5-1
5.1.1. Cleaning. 5-1
5.1.2. Vacuum Tubes. 5-2
5.1.3. Relays. 5-2
5.2. Trouble Shooting 5-3
5.2.1. General 5-3
5.2.2. Isolating The Trouble 5-3
5.2.3. Power Supply Troubles 5-4
5.2.4. Radio Frequency Trouble 5-5
5.2.5. Audio System Troubles 5-5
5.3. Replacement of Parts 5-6
5.4. Crystal Data 5-6

1-1 Type 30K-4 Transmitting Equipment
2-1 Type 30K Transmitter Outline and Mounting Dimensions
2-2 Type 177L Remote Control Unit Outline and Mounting Dimensions
2-3
2-4
2-5
2-6
2-7
2-8
3-1
Unit Placement Diagram
External Connections
Applicable Antenna Circuits
Suggested Ground Bystem
Antenna Horn Gap
Antenna Change-Over Relay Circuits
Control Functions
Primary Power Circuit
Carrier Control Circuits
Audio Peak Clipper Circuit.
Clipper Waveform Illustration
RF Output Ne Wwork, Parts Arrangement - Top
RF Exciter, Amplifier and Output Network, Parts Arrangement - Front
RF Exciter, Amplifier and Output Network, Parts Arrangement - Rear
RF Exciter, Amplifier and Output Network, Parts Arrangement - Bottom
Speech Amplifier and Modulator, Parts Arrangement - Top
Speech Amplifier and Modulator, Parts Arrangement - Bottom
Low Voltage and Bias Power Supply, Parts Arrangement - Top
5-7
Low Voltage and Bias Power Supply, Parts Arrangement - Bottom
5-8
High Voltage Rectifier and Filter, Parts Arrangement - Top
High Voltage Rectifier and Filter. Parts Arrangement - Bottom
10
Type $175 \mathrm{~V} \cdot .1$ Relay Unit, Parts Arrangement - Top
5-12
5-13
5-14
5-15
5-16 Type 175V-l Relay Unit, Parts Arrangement - Bottom
Type 177L Remote Control Unit, Parts Arrangement - Rear
Type 177L Remote Control Unit, Parts Arrangement - Bottom
Type 30K-4 Transmitter Cabling Schematic
5-17 Type 177L-2 Remote Control Unit Schematic

TYPE 177L-2 REMOTE CONTROL UNIT

TYPE 3OK-4
TRANSMITTER

FIGURE $1-1$ TYPE $30 K-4$ TRANSMITTING EQUIPMENT

SECTION 1

GENERAL DESCRIPIION

1.1. GENERAL.

1.1.1. This instruction book is intended to serve as a guide to the proper installation, adjustment, operation and maintenance of the Collins Type 30K-4 ground station transmitter.
1.1.2. The Type 30K-4 is a dual channel transmitter designed for general applications such as police service, aeronautical ground stations or general point to point communication, where service is intermittent. The adaptability of the transmitter is attested to by the wide frequency range and the flexible pi network output circuit arrangement, which permits the use of a variety of antena types.

1.1.3. EQUIPMENT DESCRIPIION.

(a) The transmitter is completely self-contained except for microphone and key. It is housed in an attractive cabinet designed in accordance with the best principles of advance styling. It is built of heavy gauge steel employing a welded stiffener type of construction. The full length rear door provides access to all units. The component parts of each sub-unit are mounted on a removable chassis. All power and control wires between the sub-units are laced together in a neatly formed cable. Connections are made at screw type, barrier, terminal strips at the rear of each unit.

The various chassis may be removed from the rear of the transmitter cabinet by first taking off the control knobs, removing the four bolts which secure the chassis to the mounting cleat, and disconnecting the cable from the terminal strip. A set of bristo wrenches is fastened to the rear door for loosening set screws in control knobs. A glass covered opening in the front panel allows a continuous check on the color of the plate of the power amplifier tube. The meter panel is also placed behind a glass covered opening in the interest of safety. The antenna current meters are located externally at the top rear edge of the transmitter cabinet. This feature allows shorter connecting leads, making possible more accurate current readings.

6 66
(b) ETECTRICAL - The stable oscillator circuit employs a type GBGtube. An 807 follows the oscillator and serves as a buffer, doubler and driver. An Eimac $4-125 A \mathrm{high}$ efficiency tetrode is used in the output stage. All r-f stages have dual tank circuits, one for each of the two pre-tuned frequencies. Relays connect the desired tuning elements into the circuit. Dual pi networks in the output stage are used for tuning the final amplifier and loading into the antenna. Only two controls, designated IUNING and LOADING are required for each network. Plus in coils for r-f stages provide maximum efficiency at all frequencies, with a saving of space and operating controls.

The audio frequency response of $150-4000 \mathrm{cps}$ is especially sufted for voice communication. An audio peak clipping circuit is incorporated to fmprove the intelligibility when the atmospheric static level is high or when frequencies are congested. The clipper permits an unusually high level of modulation. The peak power of vowel sounds is held at a low level; at the same time the consonant sounds, which provide intelligibility, are allowed to produce maximum power. The r-f carrier sideband power is greatly increased as compared to normal operation. The peak clipper also prevents overmodulation. A low pass audio filter follows the peak clipper thus attenuating audio frequencies above 4000 cps.

Remote operation can be provided by using the type l77L-2 control unit. When the length of cable from the operatig position to the transmitter is 50 feet or less, no additional equipment is réquired. However, for greater distances the type $177 \mathrm{~L}-2$ remote control unit provides filament and plate power controls, keying, microphone preamplifier and channel switching functions. The output of the remote line is fed to standard telephone line. $2-1 / 2$ pairs plus ground return are required. A db meter is incorporated in the remote control unit so the operator can control the speech level. The loss in the telephone line cannot exceed 25 db or the resistance of any wire with the ground return should not exceed 200 ohms. This represents approximately $4-1 / 2$ miles for \#19 GA telephone cable, $2-1 / 2$ miles for \#22 GA and 1 mlle for \#26 GA. For remote selection of type of emission (Phone or CW) one extra telephone wire is required.

1.2. REFERTMNCE DATA.

1.2.1. The units which constitute the complete equipment with the over-all dimensions and weights are tabulated below:

Collins Type No.	Description	Over-all Dimensions	Weight
30K-4	Transmitter	$\begin{aligned} & 22^{\prime \prime} \cdot \mathrm{w}, 16-1 / 2^{\prime \prime} \mathrm{d}, \\ & 66-1 / 2^{\prime \prime} \end{aligned}$	420 1bs
177L-2	Remote Control Unit Telegraph Key Microphone and Microphone Cable	$\begin{aligned} & 17-1 / 4^{\prime \prime} \text { w, } 7-7 / 16^{\prime \prime} \mathrm{d}, \\ & 7^{\prime \prime} \end{aligned}$	
173V-2	Relay Unit		
5044182002	Rack Mounting Angles (2) for 177L-2		
520465000	Cooling Fan Kit for Continuous Operation		
520941600	Instruction Book		

This list does not necessarily designate equipment supplied with this order.
1.2.2. FREQUENCY RANGE: $2.0-30.0 \mathrm{mc}$
1.2.3. NUMBER OF CHANNELS: two
1.2.4. FREQUENCY CONTROL: quartz crystals
1.2.5. TYPES OF EMISSION: A1 and A3
1.2.6. NOMINAL CARRIER OUTPUT: 250 watts voice 300 watts cw from 2 mc to 15 mc 200 watts volce 250 watts cw from 15 mc to 30 mc
1.2.7. AUDIO FREQUENCY RESPONSE: within 3 db from 150 to 4000 cps .
1.2.8. AUDIO FREQUENCY DISTORTION: less than 10% at either 400 or 2000 cps at 100\% modulation (with clipper and filter inoperative.)
1.2.9. INPUT IMPEDANCE (MICROPHONE) - High impedance dynamic or crystal
I.2.10. ALTITUDE FOR RATED VOLTAGE: 6000 feet
1.2.11. POWER REQUIREMENTS: standby - 160 watts on cw , 220 watts on phone operating - 910 watts on $\mathrm{cW}, 1270$ watts on phone
1.2.12. POWFR SOURCE: 115 volts, 60 cps , single phase

1.3 VACUUM TUBE COMPL FMENT,

1.3.1. TYPE 30K-4 TRANSMITTER.

Symbol	Type	Function
V201	6V6GI	Oscillator
V202	807	Frequency multiplier
V203	4-125A	R-F Power amplifier
V301	6SJ7	Audio amplifier
V302	6SN7	Audio amplifier
V303	6H6	Clipper
V304	6B4G	Modulator driver
V305	751H	Modulator
V306	751H	Modulator
V401	5R4GY	Bias rectifier
V402	5R4GY	LV rectifier
V501	866A	HV rectifier
V502	866A	HV rectifier
2. TYPE 177L-2 REMOITE CONTROL UNIT.		
V801	$65 J 7$	Preamplifier
V802	6SN7GT	Audio amplifier
V803	6X5GT	Rectifier

SECTION 2

INSTALLATION

2.1. INSTALLATION.

2.1.2. PRELTMINARY.

(a) UNPACKING - Refer to the table of equipment supplied in Section 1, paragraph 2.2.1. of this instruction book and to the packing slip for a list of all units supplied. If the crates are marked with arrows to indicate the upright position, remove crate cover only. Use a nail puller to remove nails, a bar or hanmer may damage the equipment within. Remove all of the packing material and lift each unit out carefully. Search all of the packing material for small packages. Inspect each unit for loose screws or bolts. Be certain all controls such as knobs, switches, etc., work properly. All claims for damage should be filed promptly with the transportation company. It is necessary to preserve the original packing box and the packing if claim is to be made.

2.1.3. INSTALIATION PROCEDURE.

(a) PLACING THE CABINET - The transmitter cabinet may now be set in place. It may be located for convenience of operation, but at the same time consideration should be given to power connections, control cables (if required) antenna and ground connections and maintenance accessibility. The required clearances and base dimensions are shown in figure 2-1. Because all units are placed in the cabinet from the rear, clearance should be allowed for a workman between the cabinet and any obstruction. In addition, sufficient clearance should be provided to allow for the rear door to swing back fully out of the way.
(b) INSTALIATION OF UNITS - Reference to the photographic illustrations will assist in the assembly of the transmitter. See figure 2-3. Any cords designed to hold the cable in place for shipment should be untied and removed. Place the heavy plate power transformer in position at the bottom of the cabinet and make the connections indicated by the white tags tied to the cable lugs. After this, the power transformer may be placed over the mounting holes and bolted into place if desired. Proceed with the placement of units from the bottom to the top. The tabulation below lists the various units of the transmitter. For purposes of identification the unit letter designation which appears on the cabling schematic diagram, figure 5-16 is also shown.

Unit Letter
Designation
Description

A	Meter Panel
B	R-F Exciter, Amplifier and Antenna Network
C	Speech Amplifier and Modulator
D	Low Voltage and Bias Power Supply

Unit Letter
Designation

Description
Control Panel
High Voltage Rectifier
High Voltage Power Transformer Type 175V-2 Relay Control Uait Relay Voltage Supply and External Connection Strip

Each unit should be placed with protruding control shafts properly centered to prevent binding and then bolted in place with bolts provided for that purpose. A set of bridto wrenches is attached to the rear door to be used for tightening the control knob set screws.
(c) INTERNAL CONNECTIONS - The connections between the units of the type 30K-4 transmitter are made by a pre-formed cable. The cable leads are formed and laced tightly so that they have a natural tendency to seek the proper terminal. Each wire is color coded and otherwise identified on the cabling schematic, figure 5-16, by means of the unit letter and terminal number to which each wire is terminated. Each cable connection in the transmitter is marked by a tag when the transmitter is dismantled for shipment. The cable connections can therefore be properly installed by following the markings on the tags.

The order of designation of inter-unit cabling is as follows: When a wire terminates on a single numbered terminal on a unit, the wire route is from the source to the terminal on the speciried unit and is indicated by the unit etter designation followed by the terminal number. Thus, if a wire emanating from terminal number 2 on unit A is to be connected to terminal number 12 on unit C, an arrow at terminal number 2 on unit A would indicate Cl2 and a similar arrow on terminal 12 on unit C would indicate A2.

Color coiding of wires is used to facilitate connecting cables to terminal strips. The code is indicated by a letter such as A, B, etc., followed by a figure such as $1,3,5$, etc. The letter designates the wire structure size, amount and kind of insulation and rating. The figures refer to RMA color code for resistors, etc. A class A wire with solid red covering would be an A2 while a class A tracer wire with a red body and a white tracer would be designated A29.
(d) FUSES - All fuses should be examined and their ratings checked. Refer to the MAINTENANCE section of this book paragraph 5.2.2. (b) for a table of fuses.
(e) EXIERNAL CONNECTIONS - Place all PONER switches in the OFF position before attempting to make any external connections. The external connections for the type $30 \mathrm{~K}-4$ transmitter consist of the following: AC power line, microphone, radiation system, remote control lines if used.

Figure 2-1 Type 30K Transmitter Outline and Mounting Dimensions

NOTE,
ALL DIMENSIONS ARE IN INCHES. WEIGHT:

Figure 2-2 Type 177L Remote Control Unit Outiine and Mounting Dimensions

Figure 2-3. Unit Placement Photograph
(1) AC POWER LINE - The type 30K-4 is designed to operate from a 115 volt, single phase, 60 cycle power source. The supply line voltage and frequency should be checked before connections are made. The maximum load used by this equipment is 1250 watts. A power line of at least $2 \mathrm{k} . \mathrm{v} . a$. capacity should be installed for each transmitter installation. Connect the power line directly to the bottom terminals of the line fuse block in the bottom of the cabinet. Number 10 A.W.G. or larger, suitably insulated wire should be used. The "high" side of the line should be connected to terminal No. 15, if possible. The "high" side of the line may be found by checking with a small llo volt bulb from each side of the line to an external ground. It is recommended that an external wall mounting, two pole, disconnect switch be installed between the transmitter and the main line connections. If the line voltage is more than 5 volts too low or too high, the installation of an autotransformer is advisable. If 220 volts is available, a stepdown autotransformer may be used.

Two holes $7 / 8^{\prime \prime}$ in dimeter are avallable in the base of the cabinet for power leads, if conduit type of wiring is used; otherwise, the power leads may enter the cabinet through holes in the base and thence through the above mentioned holes to the terminal board. Refer to figure 3-1 for location of the power entry holes. A l-l/2" hole in the side of the cabinet at base level is also available for power lead entry.
(2) MICROPHONE - The push-to-talk and microphone connection are made by means of Amphenol type MC 4 M four connector plug. The receptacle is located at the rear of the chassis and the microphone cable may enter the side of the cabinet, a $7 / 8^{\prime \prime}$ hole is provided. The ring on the microphone plug should be securely tightened. For LOCAL push-to-talk operation, place TEST KEY in the "locked" position and remove the jumper from terminals 5 and 6 on Unit C (speech amp and modulator).
(3) RADIATION SYSTEM - The output networks will match an extremely wide range of antenna impedances with excellent efficiency. At lower frequencies, and for antenna less than a quarter wave in length, provision is made for load coils which will assist in matching the antenna impedance. Unbalanced antenna and single wire or concentric transmission lines can be matched directly. See figure 2-5 for suggested antennas and circuits.

The details of the radiating systemfor any transmitter can best be determined at the time the installation is being made. Certain factors which will affect the operation of the equipment, however, should be considered before the installation is completed. With the 30k-4 transmitter a single antenna may be used for all frequencies provided space is available to install a suitable radiating system. When a single antenna is used for several operating frequencies, the antenna in general will not be resonant at all frequencies involved. For this type of operation it is recommended that a vertical radiating system be installed whenever possible. Such a vertical radiator would consist of either a selfsupporting insulated tower or a guyed tower or mast supported on a base insulator. When several transmitters are being installed at the same location, it is sometimes desirable to erect two tall masts to which a messenger cable may be attached.
to erect two tall masts to which a messenger cable may be attached. By connecting large diameter conductors to the messenger cable supported by the masts, several vertical radiating systems each having different properties may thus be installed This arrangement in general will result in a satisfactory radiating system for the 30K-2 Transmitter, if the conductor diameter is $3 / 4^{\prime \prime}$ to $2^{\prime \prime}$. When limitations are placed on the height to which the radiating system may extend, a single end fed antenna of at least $3 / 8$ inch outside diameter may be used.

In any case serious attention should be given to the installation of a suitable ground system. In the case of a vertical radiator, 60 radials of 8 to 10 gauge bare copper wire spaced 6 degrees apart and terminated at a common heavy conductor as near the base of the radiator as possible, should be used. The length of these radials should be at least a quarter wavelength referred to the lowest operating frequency. The connections from this ground mat to the transmitter ground ter at the roof of the r-f bay should be made by means of a heavy copper conductor copper bus. See figure 2-6.

For a single wire end fed horizontal antenna, the ground system should have the following configuration. A system of radial wires of 8 to 10 gauge bare copper spaced six degrees apart covering approximately 225 degrees and extending for approximately a quarter wavelength (referred to the lowest operating frequency) should be installed with their center directly below the vertical or feed line portion of the antenna. The area covered by the radials should be the portion opposite the open end of the horizontal part of the antenna. Attached to and emanating from the common junction or center of the radial system should be a group of wires spaced 5 or 6 feet apart and laid parallel with the horizontal portion of the antenna and extending for at least an eighth wavelength (referred to the lowest operating frequency) beyond the open end of the antenna and approximately an eighth wavelength on each side of the horizontal portion of the antenna.

The use of a suitable ground system such as outlined above will improve the radiating efficiency of the installation and will reduce excessive radio frequency voltages appearing in the control circuits, particularly the telephone line control equipment.

The height of the vertical radiator should be determined for the lowest frequency and should be at least onemuarter wavelength at this frequency.

For an end fed horizontal antemna, the ratio of the length of the vertical portion to the horizontal portion should be as large as possible. Whenever possible the height of the antenna should be at least one-quarter wavelength at the lowest frequency. The total length of the antenna including the vertical portion or lead-in should be adjusted to avoid the immediate vicinity of a hali wavelength at any of the operating frequencies. Whenever this condition exists, regardless of the choice of total length, the end fed antenna should not be used.

At the building entrance for each antenna, a horn gap should be installed to reduce the danger of damage to the equipment due to electrical storms or disturbances. Refer to figure $2-7$ for recommended installation details.

FIGURE 2-4 EXTERNAL CONNECTIONS

Figure 2-5 Applicable Antenna Circuits

Figure 2-6 Suggested Ground System

Figure 2-7 Antenna Hom Gap

Figure 2-8 Antenna Change-Over Relay Circuits

The antenna connections are made to the terminals at the rear of the transmitter. The ground system should be connected to the terminal on the cabinet base.
(4) REMOIE CONTROL UNIT CONNECTIONS - A 7/8" diameter hole is provided at the cabinet base for entrance of remote control lines if used. Refer to figure 2-4.

In remote control operation using the 177L-2 Remote Control Unit, the distance from which the transmitter may be controlled is determined by the line loss. The loss in the line cannot exceed 25 db nor should the resistance of any wire plus ground return exceed 125 ohms. This represents 2.8 miles for \#19 GA telephone cable, 1.4 miles for \#22 GA and 0.56 mile for \#26 GA. This distance from the transmitter can be extended considerably by using \#l2 open wire line which can be used up to 15 miles. For the longer distances using the smaller wire, the voltage adjustment tap on the relay supply transformer, TlO2, should be set on tap number 6. Also, low operating current telephone type relays can be installed in the 175 V unit to operate the heavier relays therein.

The 177 L Remote Control Unit is connected to the $30 \mathrm{~K}-4$ transmitter as shown in the following table:

NOTE
Be sure to remove the jumpers between $J 5$ and 6 and $J 7$ and 8 when using the 175V-2 Relay Unit.

Audio connection between the 175V-2 Relay Unit and the modulator unit is made by a short piece of microphone cable provided for this purpose. This cable is supplied with necessary connectors. Connection is made between J701 and J3O1.

Notice that terminals 10 and 11 on the 175V-2 Relay Unit connect to N.O. contacts on plate relay K702. These contacts may be used for operating auxililiary apparatus or for muting receivers.

If CW operation is employed when using the 177 L Remote Control Unit, jumper terminals 1 and 2 on the rear of the 177 L or lock the push-to-talk switch closed.

Carrier Freq. (MCS.)	Total Freq. Mult.		Oscil	lator Plate		807 Plate		PA Plate		F Choke
		Y1Ol or Y102 Crystal Freq.	L203 or L204		L207 or L208		L212 or L213		L210 or L211	
			Freq. Range	Part No.	Freq. Range	Part No.	Freq. Range	Part INo.	Freq. Range	Part No.
2-2.6	1	2-2.6	None	UsedUsed	2.0-2.6	5033828003		520.427100	2-10	5033821002
2.6-3.4	1	2.6-3.4	None		2.6-3.4	5033829003		"		11
3.4-4.0	1	3.4-4.0	None	Used	3.4-4.5	5033830003		11		"
4.0-4.5	2	2.0-2.25	None	Used	3.4-4.5	5033830003		"		"
4.5-6.0	2	2.25-3.0	None	Used	4.5-6.0	5033831003		5033839003		"
6.0-6.8	4	1.5-1.7	2.6-3.4	5033829003	6.0-8.0	5033832003		18	6-18	5033822002
6.8-8.0	4	1.7-2.0	3.4-4.5	5033830003	6.0-8.0	5033832003		"		\because
8.0-9.0	4	2.0-2.25	3.4-4.5	5033830003	8.0-10.5	5033833003		5033840003		"
9.0-10.5	4	2.25-2.625	$4.5-6.0$	5033831003	8.0-10.5	5033833003		!		"
10.5-12	4	2.625-3.0	4.5-6.0	5033831003	10.5-14	5033834003		"		"
12-14	4	3.0-3.5	6.0-8.0	5033832003	10.5-14	5033834003		"	10-30	5033823002
14-18	6	2.33-3.0	4.5-6.0	5033831003	14-18	5033835003		5033841003		n
18-24	6	3.0-4.0	6.0-8.0	5033832003	18-24	5033836003		"		"
24-30	6	4.0-5.0	8.0-10.5	5033833003	24-30	5033837003		5033842003		"

NOTE: On frequencies between 2 and 6 mc , a dumay can is plugged into 1203 and L204 sockets to make the coil hold-down operative.
(5) TELEGRAPH KEY - For local keying, plug the key into Jack J101 in the base of the 3OK-4 and place the LOCAL-REMOTE switch in the LOCAL position and the TEST Switch in the NORMAL position.

For remote keying, plug the key into the key jack on the front of the 177 L unit.
(f) CRYSTALS AND INDUCTORS - The transmitter is shipped with crystals and inductors for the two frequency channels specified at the time of purchase. However if a change in operating frequency is contemplated the proper tank circuit inductors may be selected from the table.

NOIE

Before operation of the transmitter is attempted, be sure the flexible plate lead to the 4-125A PA tube does not touch the glass envelope of the tube.

If CW operation is used from the l77L-2 remote unit, terminals 1 and 2 on the rear of the unit should be jumpered, or in lieu of this, the microphone push-totalk switch can be locked in the ON position.
(g) ANTENNA CHANGE-OVER - The $30 \mathrm{~K}-4$ transmitter is equipped with a pair of relays for changing the transmitting antenna from the transmitter output to a receiver input automatically so that the efficiency of the transmitting antenna may be utilized in receiving. These relays, $K 207$ and $K 208$, one for each channel, are a-c operated and are connected to be energized when the carrier is on. Thus energized; the receiver input is grounded and the transmitter output is connected through to the antenna. When the relays are unenergized, the antenna is connected through to the receiver input and the transmitter output circuit is grounded.

The relays may be connected in a number of ways. As shipped from the factory, the transmitter is connected for use with two separate antennas and with facilities for two receivers. In this case, the network switching contacts on K205 are not used and the output terminal of each network is connected through its respective antenna change-over relay to an antenna terminal. The inputs of both receivers will be grounded when transmitting on either channel and likewise, the outputs of each network will be connected to its respective antenna during transmission on either channel. During reception, each receiver input will be connected to its individual antenna.

The transmitter may be connected to supply one of two receivers at a time from one antenna by connecting as indicated in figure 2-8B. In this arrangement, the network output selector contacts on relay $K 205$ are used to shift the antenna from one network to the other when changing channels. One receiver will be connected to the antenna during receiving while the other receiver will be disconnected from the antenna. It is possible to connect the relays together in such a fashion that both receivers are supplied from the same antenna at the same time, at a sacrifice in efficiency, however, by placing a jumper as indicated by the dotted line in figure 2-8B.

Figure 3-1. Control Functions

If desired, a muting relay with a 115 vclt a-c coil can be connected to terminals 11 and 12 in the base of the transmitter cabinet (unit J) to mute the receivers during transmitting periods to prevent undesirable noises being produced by the receivers which sometimes happens when the transmitter and receiver are in close proximity to each other.

SECTION 3

ADJUSTMENT AND OPERATION

OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLTAGES WHICH ARE DANGEROUS TO LIFE. OPERATING PERSONNEL SHOUID AT ALL TIMES OBSERVE AL工 SAFETY PRECAUTIONS. DO NOT CHANGE TUBES OR MAKE ADJUSTMENTS INSIDE EQUIPMENT WITH SUPPLY VOLTAGE ON. DO NOT DEPEND UPON DOOR INIERLOCK SWITCH FOR PORTECTION BUT ALWAYS OPEN THE MAIN SWITCH IN SUPPLY LINE TO EQUIPMENT.
3.1. GENERAL. - After the installation wiring is complete and the tubes, fuses, crystals and inductors have been properly positioned in their respective sockets the equipment is ready for initial operational adjustment. All important operating controls are located on the front panel of the transmitter and each is clearly designated as to function. The following paragraphs list the control designations and circuit elements controlled by each. Refer to figure 3-1.
3.1.1. FILAMENT, ON-OFF switch. This switch, Sl05, energizes or de-energizes the primary windings of the following transformers: T102, T201, T303, T401, and T501.
3.1.2. PLATE ON-OFF switch. This switch, Sl06, will apply power to the primary winding of T402. If the plate voltage control is in the TUNE or OPERATE position, the primary winding of TlOl will be energized, also.
3.1.3. FIL VOLTAGE ADJUSTMENT. This switch, Sl04, selects taps on the primary winding of the power amplifier and modulator filament transformer; T303, thereby giving a small range in the voltage applied to the tube filament.
3.1.4. PLATE VOLTAGE CONTROL. This switch, SlO7, has three positions; LV, TUNE and OPERATE. When placed in the LV position no plate voltage is applied to the r-f amplifier or modulator tubes, allowing tuning adjustments to be made on the exciter section of the transmitter and grid of P.A. In the TUNE position a resistor, RIOl is connected in series with the primary of the transformer T1Ol resulting in a reduced voltage on the r-f amplifier and modulator tubes. When rotated to the OPERATE position full plate power is applied to these tubes.
3.1.5. PHONE CW SEIECTOR switch. When this switch SlO9 is placed in the CW position the filament supply voltage to the modulator tubes is removed and the secondary windings of the modulation transformer T302 is short circuited. In the PHONE position the circuits are returned to normal operations.
3.1.6. TREST KEYY. The test key, Sl01, serves to close the carrier control circuit during the time tuning adjustments are being made. If the switch is operated in one direction the key will immediately return to the normal position when released; ; if operated in the opposite direction the key will lock to permit the making of tuning adjustments without the necessity of holaing the telegraph key closed or the push-to-talk button on the microphone operated.
3.1.7. CHANNEU switch. Either one of the tro predetermined frequency channels may be selected by operation of this switch, 8102 . In the CHANKEL 1 position relays K 204 and K 205 are energized and relays K 202 and K 203 are not energized. When S102 is in the CHANNEL 2 position relays K2O4 and K2O5 are not energized and relays K 202 and K2O3 are energized.
3.1.8. LOCAL-REMOIE CONIROL switch. Operating this awitch, S103, to the REMOIE position, allows the transmitter to be operated by remote control. A type 177L-2 remote control unit is necessary if the distance from the operating position is greater than fifty feet.
3.1.9. OSC PIATE TUNING. The CHANNEL 1 control operates capacitor C206, while CHANNEL 2 control operates C2O7.
3.1.10. MULT PLATE TUNING. The CHANNEL I control operates C212 and the CHANNESD 2 control operates C213.
3.1.11. ANT TUNING \& LOADING. The CHANNEL 1 control operates capacitor C218 and the CHANNEL 2 control operates capacitor C223.
3.1.12. PA PLATE TUNING. The CHANNEL 1 control operates capacitor C219 and the CHANNEL 2 control operates capacitor C222.
3.1.13. AUDIO GAIN. The AUDIO GATN control operates the potentiometer R306. The control permits adjusting of the input to the audio amplifier tube V302. The speech amplifier gain increases as the control is rotated from 0 toward 10.

3.2. ENERGIZING THE EQUIPMENT FOR THE FIRST TIME.

3.2.1. PRECAUTIONS - Before applying any voltage to the transmitter a thorough inspection of all connections should be made for tightness and clearance to structural parts which are at ground potential.

It is suggested the installation engineer read this complete section before beginning tuning adjustments. After this he will be able to make proper adjustments for the particular coil combinations which will be used.
3.3. ADJUSTMENT PROCEDURE.
3.3.1. RF ADJUSTMENIS.
(a) Place the FILAMENT power switch in the ON position. Make certain the PLATE power switch is in the OFF position.
(b) Adjust the filament voltage of the modulator and the r-f final amplifier tubes to 5 volts as indicated on the FIAMENT VOLTAGE meter using the FIL VOLTAGE ADJUSTMENT knob located directly above the filament switch on the front panel.

NOTE

On some units, the magnetic flux from K 2 O 4 causes Filament Voltmeter M103 to fail to return to zero. Due to the construction of the $A C$ voltmeter, the error will not exceed 0.1 to 0.2 volt at the measured voltage, and will generally cause the meter to read high by that amount. This should cause no difficulty since the accuracy is still within that required for control of the filament circuits. It will also be noted that during excitation of the relay K204 an even further error is introduced. It is suggested that all measurements of filament voltage be conducted with the channel selector on Channel 2. Permit the equipment to operate in this manner, with only the filament power only turned on, for a period of 15 minutes. This will allow the 866A rectifier tubes to attain proper operating conditions. Such a procedure is necessary only when new rectifier tubes are placed in service. The filament voltmeter, M-301, has been set to zero properly when it was not adjacent to other meters nor relay $\mathrm{K}-204$. It will normally read below zero when placed in the transmitter with no filament power applied, but this adjustment will give the most accurate reading with 5 volts.
(c) Operate the PHONE-CW switch to the CW position. Set the AUDIO GAIN at 0.
(d) Operate the REMOIE-LOCAL control switch to the LOCAL control position.
(e) Operate CHANNEL selector switch to either CHANNEL 1 or CHANNEL 2. The channel selected will depend upon the position of the frequency determining components such as crystals and inductors.
(f) Place the PLATE VOLTAGE control in the LV position.
(g) Operate the PLATE switch to the ON position.
(h) Operate the TEST switch.
(1) Adjust the OSC PLATE TUNLNG control, if OSC coil is used, until maximum grid current is indicated on meter, M201. If OSC coil is not used, (on output frequencies below 6 mc) set the control at 100 on the dial. If, after tuning the MULT PLATE TUNING, (see below) the $4-125 \mathrm{~A}$ grid current is greater than 15 ma turn the OSC PLATE IUNING control in the direction of decreasing dial numbers thereby increasing capacity in the circuit which will deerease the drive to the 807 multiplier tube and reduce the $4-125 \mathrm{~A}$ excitation.
(j) Adjust the MULT PLATE TUNING control, for the channel which is being used, until maximum grid current is indicated by the PA GRID CURRENT meter. A reading of 12 to 15 ma should be obtained. If the final grid drive is too great it may be adjusted by detuning the OSC PLATE TUNING control slightly in the direction of smaller numbers on the dial scale (only when the output frequency is less than 6 mc).

NOTE

12 to 15 ma grid current is best, but any grid current from 10 to 20 ma will give satisfactory operation. These grid current values Bhould be obtained with plate power on and at full load since the grid current may drop slightly when the PA is loaded in the higher frequencies.
(k) Set the ANIENNA IUNING \& LOADING control at half capacity and with the PLATE VOLTAGE control in the TUNE position and the LOCAL-REMOTE control switch in the LOCAL position, apply PLATE power.

NOIE

Maximum capacity on all tuning dials is at " O " on the dial.
(1) Operate the IEST switch and immediately attempt to resonate the power amplifier plate tank circuit by operating the PA PLATE TUNING. Resonance will be fndicated by a sharp dip in current on the PA PLATE CURRENT meter, M10l. If resonance cannot be established, change the position of the inductor tap and make another attempt to resonate the circuit.

NOIE

If the tap on the inductor happens to fall in a position which leaves more than 50% of the turns unused the unused portion should be shorted out. This is easily done by soldering a short piece of heavy bus between the cold end of the coil and the coil rider right at the lugs on the connecter pins.
(m) Operate the TEST KEY and using the ANIENNA TUNING \& LOADING control, load the power $\operatorname{mplifier} s t a g e$ until the PA PLATE CURRENT meter indicates 80 ma. While increasing the loading with the ANIENNA TUNING \& LOADING control, keep the tank circuit in resonance with the PA PLATE TUNING control.
(n) Operate the PLATE VOLTAGE control to the OPERATE position and repeat step (m) until the PA PLATE CURRENT meter indicates 200 ma.
(o) Repeat the above tuning procedure for the other frequency channel.

NOTE
Do not operate the CHANNEL selector switch with the PLATE power ON.

3.3.2. VOICE OPERATION ADJUSTMENTS.

(a) TINING ADUUSIMENTS - The tuning adjustments for type A3 emission are identical to those just outlined except that the r-f power amplifier should be losded to 150 ma in step 3.3.1. (m). The PHONE-CW switch should be in the PHONE position.

CAUTION
Do not operate the PHONE-CW switch while the plate power is ON. Always turn the PLATE power switch to the OFF position before operating the PHONE-CW skitch.

The modulator static plate current (no modulation) should be adjust to 45 ma by rotating the MODULATOR BIAS control at the rear of the speech amplifier and modulator unit with the transmitter fully operating. This will have to be done by steps since opening the rear door operates the interlock switch and turns the plate power off.

CAUTION

When applying plate power to the modulator tubes for the first time, immediately check the modulator static (resting) plate current. If over 45 ma , adjust before attempting further operation; otherwise, the modulators may become damaged.
(b) AUDIO ADJUSTMENIS.
(1) REMOIE CONTROL ADJUBTMENTS - This tranamitter has been designed for remote operation from a type $177 \mathrm{~L}-2$ remote control unit. The distance from which the transmitter may be controlled is determined by the line loss. The loss in the line cannot exceed 25 db . The procedure outined below should be followed in making preliminary adjustments.
(a) Apply filament and plate to the tubes in the $177 \mathrm{~L}-2$ unit by operating the ON-OFF switch to the ON position. (The transmitter FIIAMENT and FLATE switches must be in the ON positions at all times REMOTE operation is desired.)
(b) When the tubes in the remote control unit have reached operating temsperature, rotate the l77L-2 gain control in a clockwise direction until the AUDIO LEVEL meter, M 801 , indicates 0 db (zero level corresponds to 6 mv into 500 ohms) on peaks when talking in a normal tone into the microphone.
(c) With the tranmitter AUDIO GAIN control set at $1 / 3$ ON position, adjust the audio control R701 in the 175V-2 Relay Unit for desired modulation. (When speaking into the remote microphone.)
(2) TRANBMITITER ADJUBTMENTIS.
(a) BPEECE CLIPPER OUT - The percentage of modulation at which speech clipping occurs has been chosen at 100% and the modulation control locked at the factory. If speech clipping is not desired, merely adjust the AUDIO GAIN control on the front panel until approximately 125 ms MODULATCR PLANE current is obtainable on heavy modulation peaks.

In the event speech clipping is dispenced with entirely, the 6H6 clipper tube can be removed from its socket in the modulator unit. This is not recommended however, since the clipper does prevent overmodulation.
(b) BPHBCE CLIPPER IN - The clipper level adjustment on the rear of the speech unit was set at the factory using the following procedure. The transmitter was loaded for normal power input and a 400 ycle sine wave audio tone fed into the microphone input. The clipper level adjustment was then set at approximately 1/5 turn back from the full clockwise position. The audio gain control was then advanced until approximately 75% modulation was observed on an oscilloscope screen, after which the audio input was increased just 12 db and the clipper level control adjusted so that 100% modulation was reached. This procedure is repeated if necessary so that 12 db increase in audio level raises modulation to just under 100%.

The amount of speech clipping can be adjusted by the AUDIO GAIN control. With the control in an advanced position, a greater amount of sideband poser Is obtained because of the high modulation average. With the control set thus, however, a quiet operating position is desirable because of the higher overall audio gain with resulting higher room noise. Where the background noise is objectionable a noisecancelling microphone is recomended.

NOIS
Since clipping over 6 db results in less desirable quality, even though the intelligibility may be better for working through interference, the signal should be monitored and the audio gain adjusted to the point which produces a balance between more audio power and good quality.
3.4. TYPICAL MEIER READINGS.
3.4.1. PHONE EMISSION

PA PLATE CURRENTI - 150 ma
PA GRID CURRENT - 12-15 ma
MULTLPLIER GRID CURRENT - 0.4 ma
MODULATOR PLATE CURRENT - STATIC - 45 100\% MOD (Sine wave) - 150 ma

FILAMENT VOLTAGE - 5 v
3.4.2. CW EMISSION

PA PLAITE CURRENT - 200 ma
PA GRID CURRENI - 12-15 ma
FILAMENI VOITAGE - 5 v
MULIIPLIER GRID CURRENT - 0.4 ma

SECTION 4

CIRCUIT DESCRIPIION

4.1. GENERAL.

The Collins Type $30 K-4$ has twb r-f channels, each of which may be pretuned to any frequency between 2.0 and 30.0 mc . Switching from one to the other is accomplished instantaneously by means of relays. A stable crystal controlled oscillator is followed by a stage employing an 807 tube which serves as a buffer, doubler and driver. A single high efficiency tetrode is used in the output stage. The audio circuit is designed especially for voice communication.

4.2. PRIMARY POWER CIRCUITS.

Refer to figure 4-1. The filament transformers T201, T303, T403, and. T501, blas supply transformer T40l and relay voltage transformer Tl02 are energized when the FILAMENT switch, SlO5, is closed. The FILAMENT switch disconnects all power to the transmitter and must be on for REMOTE as well as LOCAL operation. Each of the above transformers is protected by a fuse. The filament voltage applied to the modulator and r-f power amplifier tubes may be adjusted by operation of S104. The low voltage transformer T402 and high voltage plate transformer Tlol are energized by operation of plate relay K 401 which is operated when the PLATE switch is closed. Because the relay coil energizing voltage is obtained from the bias supply, the possibility of applying plate power to modulator and r-f power amplifier with no fixed bias present is eliminated. A plate primary interlock switch, Sl08, is operated by the rear access door. When placed in the TUNE position the FLATE VOLTAGE CONTROL switch, SlO2, reduces the primary voltage on the high voltage plate transformer, Tlol, during the tuning procedure.

NOTE

The door interlock switch, Sl08, should not be made inoperative under any circumstances.

4.2.1. RECTIFIER POWER SYSTEM, - The type $30 \mathrm{~K}-4$ employs three separate d-c power circuits. These consist of a blas supply, a low voltage supply for the speech amplifier and low level r-f stages, ani a high voltage supply for the modulator and r-f power amplifier stages. The bias supply employs a type 5R4GT tube, V40l. The d-c output of the supply is approximately -145 volt. Provision is made for blas voltage adjustment on the modulator grids. The low voltage plate supply uses a $5 R 4 \mathrm{GY}$ tube, V402, in the rectifier circuit. The d-c output voltage is approximately 500 volts. The high voltage supply employs two type 866 A tubes in a single phase full wave rectifier circuit. It supplies plate power to the r-f power amplifier and modulator tubes. The d-c output voltage of the high voltage supply is 2500 volts.

4.3. CARRIER CONITROL CIRCUITS

The carrier control circuits of the transmitter are outline in figure 4-2. The CHANNEL switch, SlO2 will function only when the LOCAL-REMOTE switch, S103 is in the LOCAL position. When SlO3 is in the REMOTE position the desired channel may be selected from the remote control unit. When SlO3 is in the LOCAL position the key circuit is made operative and the auxillary plate relay, K702, contacts are shorted allowing the transmitter plate switch, Sl06, to have control, the filament relay, K7Ol circuit is closed so the transmitter FILAMENT switch, Sl05, will remove all filament power. The keying relay, K2Ol, interrupts the crystal oscillator plate and the mult. screen circuits. The plate voltage relay, K401, receives its energizing voltage from the bias supply and will not operate until bias voltage is being applied to the modulator and r-f power amplifier tubes. $2-1 / 2$ pair of telephone lines and ground return are used to connect the type 177L-2 remote control unit and the transmitter. The resistance of any wire and ground return should not exceed 200 ohms. If the operating controls (microphone, push-to-talk switch, key, relay control) are located at a distance no greater than 50 feet from the transmitter, a remote control unit will not be required.

4.4. RF CIRCUITS

4.4.1. OSCILILATOR. - A type 6VGGT tetrode, V201, is employed in a stable crystal controlled oscillator circuit. The proper crystal for operation on either channel one or channel two 1 s selected by contacts on relay K202. Another group of contacts on this relay connect the desired osc plate tank components in the circuit. Screen voltage for the oscillator is supplied through the dropping resistor, R203. $\& 202$
4.4.2. MULTIPLIER. - The multiplier stage uses a type 807 tube, V202. Grid current is indicated by M2O1. A voltage divider composed of resistors R209 and R210 supplies screen voltage for the exciter tube.
4.4.3. RF POWER AMPLIFIER. - The r-f amplifier uses a high efficiency tetrode. The proper grid circuit components are connected in the circuit by relay, K203. The desired output network is connected by relay, K204.
4.4.4. RF OUTPUT CIRCUIT. - The output circuit employed in the $30 K-4$ transmitter consists of a pi section plate tank circuit. It is designed to operate over the frequency ranges 2000 to $30,000 \mathrm{kc}$ by means of plug-in coils. It is designed to operate into an unbalanced transmission line or antenna.
4.5. AUDIO CIRCUITS.
4.5.1. GENERAL. - A high gain preamplifier is followed by a two stage audio

Figure 4-1. Primary Power Circuit

Figure 4-2. Carrier Control Circuits
amplifier which is shunted by a peak clipper tube. The output of the amplifier is followed by the modulator driver stage, which in turn is followed by the class B modulator. Full 100% modulation is attained with the use of any high impedance microphone such as a crystal or high impedance dynamic. The peak clipper limits or clips both the negative and the positive audio peaks, (if clipping is desired) thus preventing overmodulation while allowing a more powerful side band to be transmitted. A low-pass filter attenuates all speech frequencies over 4000 cps .
4.5.2. SPEECH AMPLIFIER CIRCUITS. A type $6 S J 7$ pentode, V301 is employed as a high gain voltage amplifier. Following the preamplifier is a type 6 SN 7 dual triode tube, the first section of which precedes the 6 H 6 clipper tube. Refer to figure 43 . The type 6 H 6 clipper tube V303, is shunted across the audio fnput to the second section of the type $6 S N 7$ audio amplifier tube. The cathode of one section of the type 6H6, pin number 4, is opersted at a small fixed value of positive potential by virtue of being connected through reactor L301, resistor R 310 to a tap on the cathode resistors R311, R312, and R313. This positive cathode potential biases the corresponding diode plate and no current flows through this section of the tube. However, when the magnitude of the negative audio peaks applied to the diode catbode become large enough to overcome the fixed poaitive potential, current flows through this section of the diode and the negative audio peak is limited or clipped by the short circuiting action of the diode. Likewise, the cathode of the second section of the clipper tube is returned to a tap on the type $6 S N 7$ amplifier cathode resistor which is more positive than the tap where its corresponding plate is attached. Thus the plate of the second section of the type 6H6 is more negative than the cathode and no current flows. When a positive audio peak of sufficient magnitude reaches this diode plate the fixed negative bias ia overcome and current flows through the second section of the diode and the positive audio peak is limited or clipped. Because of the above action the audio output of the second section of the audio amplifier tube cannot rise above the fixed level. Therefore, it is possible to set the degree of maximum modulation with the peak clipper control, R315, and to be assured that the percentage of modulation will not rise above the chosen amount.
4.5.3. MODULATOR DRIVER CIRCUITS. The output from the second section of the type 6SN7 dual triode tube is coupled to the grid of the driver tube, V304, through capacitor C310 and the clipper control R315. A type 6.54 G power amplifiex triode, drives the grids of the class B moduator tubes througin transformer T301.
4.5.4. MODULATOR CIRCUIT. - A pair of type 75th triode power umplifier tubes are employed as modulators operating in class B service. Excitation for the modulator grids is obtained through the driver coupling trangfommer T301. Both the screen and the plate of the r-f power amplifier tube are modulated by individual secondary windings on the modulation transformer T302. When gwitching to CW emission, the modulator filaments are turned off and the power amplifier plate winding in the modulation transformer is short circuited. Plate voltage for the audio amplifier and driver stages is obtained from the low voltage supply while plate voltage for the modulator tubes is obtained from the high voltage supply. Screen voltage for the power amplifier tube is also taken from the low voltage supply. Grid blas for all audio tubes except the modulators is obtained from cathode resistors. The modulators are biased by voltage from the bias supply. A pctentiometer, R401, located at the rear of the low voltage power supply unit is used for adjustment of the modulator bias.

Figure 4-3 Audio Peak Clipper Circuit

$\begin{array}{cc}\text { CONSONANT } & \text { VOWEL } \\ \text { SOUNDS } & \text { SOUNOS } \\ \text { (HIGH FREQ.) } & \text { (LOW FREQ.) }\end{array}$

Figure 4-4 Glipper Waveform Illustration

SECTION 5

MAINTENANCE

This radio equipment is constructed of materials considered to be the best obtainable for the purpose, and has been carefully inspected and adjusted using accurate test equipment. No one but an authorized and competent service technician equipped with proper test facilities should be permitted to service the equipment.

5.1. ROUTING INSPECTION SCHEDULES.

Routine inspection schedules should be set up for periodic checks of the equipment. This inspection should include examination of the mechanical system for excessive wear or binding and of the electrical system for electrical defects. Make a check of the emission characteristics of all tubes. See that all tubes are replaced correctly and fully in their sockets, and that good electrical contact is made between the prongs of the tube and socket. Check all relays for proper operation and inspect relay contacts to make certain that the contact surfaces are clean and free from pits and projections. Make certain that contacts of all receptacles and plugs, such as microphone, key and cable connectors, are clean and make firm mechanical connections between one another. If the routine inspection of the equipment is carried out faithfully, the changes of improper operation of the equipment 1s greatly minimized. It 1s, therefore, important that this inspection be made at least once each month and it should be sufficiently thorough to include all major electrical circuits of the equipment.
5.1.1. CLEANING. - The greatest enemy to uninterrupted service in equipment of this type is corrosion and dirt. Corrosion itself is accelerated by the presence of dust and moisture on the component parts of the assembly. It is impossible to keep moisture out of the equipment in certain localities buth foreign particles and dust can be removed by means of a soft brush and dry, oflfree jet of air. Remove the dust as of ten as a perceptible quantity accumulates in any part of the equipment. It is very important that rotating equipment, such as variable condensers and tap switches, be kept free of dust to prevent undue wear. Likewise, variable condenser plates should be kept free from dirt to avoid flashover on modulation peaks.

One of the predominant sources of trouble in equipment located in a salt atmosphere is corrosion. Corrosion resulting from salt spray or ealt laden atmosphere may cause failure of the equipment for no apparent reason. In general, it will be found that contacts such as tap switches, tube prongs, cable plug connectors and relay contacts are most affected by corrosion. When it is necessary to operate the equipment in localities subject to such corrosive atmosphere, inspection of wiping contacts, cable plugs, relays etc., should be made more frequently in order to keep the equipment in good condition.
5.1.2. VACUUM TUBES. - Make a check of emission characteristics of all tubes. After the emission check, examine the prongs on all tubes to make sure that they are free from corrosion. See that all tubes are replaced correctly and fully in their sockets, and a good electrical contact is made between the prong of the tube and socket. Use caution in removing and replacing grid or plate caps on tubes. Before a tube is discarded, make certain that the tube is at fault and the trouble is not a loose or broken connection within the equipment. A complete set of tested tubes of the same type specified should be kept on hand at all times. If faulty operation of the transmitter is observed and tube failure suspected, each tube may be checked by replacing it with a tube known to be in good condition. Defective tubes causing an overioad in power circuits may usually be located by inspection. It will be found that excessive heating or sputtering within the vacuum tubes is a good indication of a fault in the tube circuit.

If tubes have been in use for a period of time equal to or exceeding the manufacturer's tube life rating, it is suggested that they be replaced. A marked improvement in the performance of the equipment is usually noticeable after the weak tubes have been replaced.

(a) PRECAUTIONS FOR SATISFACTORY TUBE LIFE.

(1) Before any tube is removed from the equipment, make certain the primary power is disconnected from the equipment.
(2) Operate all tubes within $\pm 5 \%$ of rated filament voltage.
(3) Do not exceed the rated plate current of any tube during normal operation of the equipment.
(b) TUBE REPLACEMENT PRECAUTIONS.
(1) All tubes are removed by pulling straight up on them.
(2) Remove plate cap connectors with great care to prevent breaking the seal around the plate cap. Grid and plate cap adaptors are used on the modulator tubes. To prevent glass breakage when changing tubes, lay the tube on its side on a table, grasp the adaptor with a pair of pliers and loosen the set screws with a bristo wrench. When tightening the set screws on the new tube, be sure and hold the adaptor with the pliers.
(3) Before the tube is inserted, make certain that the type of tube is correct for the socket into which it is being placed.
5.1.3. RELAYS. - All relays should be inspected at regular intervals. Check the contacts for proper alignment, pitting and corrosion. Use a burnishing tool to clean contacts, never use sandpaper or emery cloth.

5.2. TROUBLE SHOOMING.

5.2.1. GENERAL. - If the section of the equipment in which the fault occurs can be isolated, the trouble may be located with a minimum of effort. Continuity checks and voltage measurements in circuits still operative may be helpful in isolating the trouble. For this purpose, an a-c, d-c voltmeter having an internal resistance of not less than 20,000 ohms per volt and equipped with a battery for continuity and resistance measurements is necessary. An oscilloscope is very useful in tracing faults in r-f and a-f circuits.

A frequent cause of trouble in equipment of this type is tube failure. If trouble occurs in the equipment, isolation of the circuit at fault is helpful in determining the location of the defective tube. Defective tubes which cause an overload in power circuits may usually be located by inspection. Low emission tubes may be the cause of erratic or poor performance of the equipment. If there is any doubt concerning the emission of any tube, it should be checked and immediately replaced if found defective. Tubes with electrical noises can cause excessive distortion or hum. This fault may be difficult to isolate to a particular tube. However, a tube suspected of faulty operation may be checked by replacing with a like tube known to be in good condition.

5.2.2. ISOLATING THE TROUBLE.

(a) Check the position of all controls to determine if they have been accidentally moved from the normal operation position.
(b) A check of all fuses should be made to determine the power circuit affected by the trouble. Fuse failure should be replaced only after the circuit in question has been carefully examined to make certain no permanent fault exists. Always replace a fuse with one having a rating specified in the following table.

	FUSE TA		
Symbol	Circuit Location	Type	Rating
F101	Primary power source line	Screw base	15 amp
F102	Primary power source line	Screw base	15 amp
F103	Relay voltage supply transformer primary	Cartridge Slo-Blo	$1 / 2 \mathrm{amp}$
F201	Exciter filament transformer primary	$\begin{aligned} & \text { Cartridge } \\ & \text { Slo-Blo } \end{aligned}$	1/2 amp
F301	Speech amplifier filament transformer primary	$\begin{aligned} & \text { Cartridge } \\ & \text { Slo-Blo } \end{aligned}$	1/2 amp

Symbol	Circuit Iocation	Type	Rating
F401	Bias supply transformer primary	Cartridge (3AG)	1/2 8 mp
F402	LV power supply transformer primary	Cartridge (3AG)	3 amp
F501	HV rectifier filament transformer primary	Cartridge (3AG)	1 amp
F801	Type 177L-2 Remote Control Unit	Cartridge (3AG)	1/4 amp

(c) Check the circuits in the sequence by which they are made operative in starting the transmitter.
(d) Compare the transmitter meter readings with the typical readings given under operational data in Section 3.
(e) Make a visual inspection of all tubes, resistors and chokes. Tubes may be sputtering indicating shorts or their plates may show color indicating a heavy current drain. Resistors and chokes may be discolored by passing large amounts of current.
5.2.3. POWER SUPPLY TROUBLES. - The Pollowing chart lists troubles often encountered in power supply systems and causes and corrections of each:
(a) FAIIURE OF FILAMENT SUPPLY VOLTACE.
$\underline{\text { Symptoms Possible Cause of Trouble Remedy }}$

1. No filament voltage 1. a. Associated fuse in 1. a. Replace fuse. applied to any one certain primary circuit is open. tube in the equipment.
2. Filament pilot lamp does not light.
3. Filament pilot lamp defective.
b. Replace transformer if found to be defective. transformer.
4. Replace lamp.
(b) FAILURE OF PLATE VOLTAGE SUPPLY. - High voltage supply does not come on when PLATE supply switch is operated.

Symptoms

1. Plate pilot lamp does not light and the meters indicate no plate current on modulators or power amplifiers.

Possible Cause of Trouble

1. a. Defective plate relay, 1. Replace component K401. 2. Defective door switch. 2. Same as above. 3. Defective plate switch. 3. Same as above. 4. If 177L-2 used: Open 4. Same as above. plate switch or push-to-talk button.
(c) LV OR BIAS VOLTAGE SUPPLY FAILURE.

Symptoms	Possible Cause of Trouble	

5.2.5. AUDIO SYSTEM TROUBLES.
(a) DISTORIION. - Very little distortion, except when clipping, is likely to occur with this equipment. However, if distortion is at all noticeable, the following checks should help to locate and correct it:

Check the static plate current on the modulators. This current should be approximately 45 ma for best operation. This value can be obtained by adjusting the bias on the modulators.

Replace the audio amplifier tubes with tubes known to be good.
Distortion may sometimes be difficult to locate. It may require a step by step method of testing with the oscilloscope until the point is reached where the distortion occurs.

5.3. REPTACEMENT OF PARTS.

The detailed tabular parts list which follows in the next section of this instruction book will aid in the choice of correct replacement parts.
5.4. CRYSTAL DATA.
a. Crystal frequency: In the range 1.5 mc to 5.0 mc as shown in the following table:
Channel Freq. In MC Divide by Crystal Freq. In MC

2.0 to 4.0	1	2.0 to 4.0
4.0 to 6.0	2	2.0 to 3.0
6.0 to 8.0	4	1.5 to 2.0
8.0 to 14.0	4	2.0 to 3.5
14.0 to 30.0	6	2.333 to 5.0

b. Temperature Coefficient: not exceeding 2 PPM/OC over the total range, nor exceeding $4 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ over any 10° increment.
c. Calibration $\pm .005 \%$ at $25^{\circ} \mathrm{C}$ in correlated test oscillator.
d. Activity: . 5 ma minimum rectified grid current.
e. Crystal Cut: AT

- Crystal Bland Size: I' $^{\prime \prime}$ square.
g. Electrodes: Air gap type preferably monel.

Figure 5-1. RF Output Network, Parts Arrangement - Top

Figure 5-2. RF Exciter, Amplifier and Output Network, Parts Arrangement - Front

Figure 5-3. RF Exciter, Amplifier and Output Network, Parts Arrangement - Rear

Figure 5-4. RF Exciter, Amplifier and Output Network, Parts Arrangement - Bottom

Figure 5-5. Speech Amplifier and Modulator, Parts Arrangement - Top

Figure 5-6. Speech Amplifier and Modulator, Parts Arrangement - Bottom

Figure 5-7. Low Voltage and Bias Power Supply, Parts Arrangement - Top

Figure 5-8. Low Voltage and Bias Power Supply, Parts Arrangement - Bottom

Figure 5-9. High Voltage Rectifier and Filter, Parts Arrangement - Top

Figure 5-10. High Voltage Rectifier and Filter, Parts Arrangement - Bottom

Figure 5-11. Type 175V-2 Relay Unit, Parts Arrangement - Top

Figure 5-12. Type 175V-2 Relay Unit Parts Arrangement - Bottom

Figure 5-13. Type 177L-2 Remote Control Unit, Parts Arrangement - Top

Figure 5-14. Type 177L-2 Remote Control Unit, Parts Arrangement - Bottom
Figure 5-16 Type 30K-4 Transmitter Cabling Schematic

Figure 5-17 Type I77L-2 Remote Control Unit Schematic

SECTION 6
PARTS LIST

ITEM	CIRCUIT FUNCTION		DESCRIPTION	$\begin{gathered} \text { COLLINS } \\ \text { PART NUMBER } \end{gathered}$
C101	Relay supply voltage filter	CAPACATOR:	20 mf	184650900
C102	Relay supply voltage filter	CAPACITOR:	20 mf	184650900
C201	Oscillator, V201, grid circuit capacitor	CAPACITOR:	$15 \mathrm{mmf} \pm 10 \%$; 500 WV	935007300
C202	Oscillator, V201, grid cathode capacitor	CAPACITOR:	$47 \mathrm{mmf} \pm 5 \% ; 500 \mathrm{WV}$	935009100
C203	Oscillator, V201, cathode capacitor	CAPACITOR:	$330 \mathrm{mmf} \pm 10 \% ; 500 \mathrm{WV}$	935012700
C204	Oscillator, V201 screen bypass capacitor	CAPACITOR:	$4700 \mathrm{mmf} \pm 20 \% ; 500 \mathrm{WV}$	935210400
C205	$\begin{aligned} & \text { R-F coupling } \\ & \text { capacitor } \end{aligned}$	CAPACITOR:	$1000 \mathrm{mmf} \pm 20 \% ; 500 \mathrm{WV}$	935410100
C206	Oscillator, V201, plate tank capacitor	CAPACITOR:	100 mmf	920112000
C207	Oscillator, V201, plate tark capacitor	CAPACITOR:	100 mmf	920112000
C208	$\begin{aligned} & \text { R-F coupling } \\ & \text { capacitor } \end{aligned}$	CAPACITOR:	$1000 \mathrm{mmf} \pm 20 \% ; 500 \mathrm{WV}$	935410100
C209	Multiplier, v202, screen bypass	CAPACITOR:	10,000 mmf $\pm 20 \% ; 300 \mathrm{WV}$	935211800
C210	Multiplier, V202, cathode bypass	CAPACITOR:	10,000 mmf $\pm 20 \%$; 300 WV	935211800
C211	R-F coupling capacitor	CAPACITOR:	$1000 \mathrm{mmff} \pm 20 \% ; 500 \mathrm{WV}$	935410100

ITEM	CIRCUIT FUNCTION		DESCRIPIION	COLLINS PART. NUMBER
C212	Multiplier plate tank capacitor	CAPACITQR:	100 mmf	920112000
C213	Multiplier plate tank capacitor	CAPACITOR:	100 mmf	920112000
C214	$\begin{aligned} & \text { R-F coupling } \\ & \text { capacitor } \end{aligned}$	CAPACITOR:	$1000 \mathrm{mmf} \pm 20 \% ; 500 \mathrm{WV}$	935410100
C215	R-F amplifier, V203, filament bypass capacitor	CAPAOITOR:	$4700 \mathrm{mmf} \pm 20 \% ; 2500 \mathrm{WV}$	936110500
C216	R-F amplifier V203, filament bypass capacitor	CAPACITOR:	$4700 \mathrm{mmf} \pm 20 \% ; 25100 \mathrm{WV}$.	936110500
C217	R-F amplifier, V203, screen bypass	CAPACITOR:	$1000 \mathrm{mmf} \pm 20 \%$; 2500 WV	936025000
C218	Channel 1 antenna tuning and loading capacitor	CAPACIT'R:	dual sect; 670 mmf per sect	920001800
C219	Channel 1 plate tuning capacitor	CAPACITOR:	dual sect; 75 mmf per sect	920001600
C220	RrF coupling capacitor	CAPACITOR:	193 mmf	924100500
C221	$\begin{aligned} & \text { R-F coupling } \\ & \text { capacitor } \end{aligned}$	CAPACITOR:	193 mmf	924100500
C222	Channel 2 plate tuning capacitor	CAPACITOR:	dual sect;-75 mmf per sect	
C223	Channel 2 antenna tuning and loading capacitor	CAPACITOR:	dual sect; 670 mmf per sect	920001800
C224	$\begin{aligned} & \text { R-F coupling } \\ & \text { capacitor } \end{aligned}$	CAPACITOR:	$1000 \mathrm{mmf} \pm 5 \%$	938206600
C226	Click filter	CAPAOITCR:	. $1 \mathrm{mf}+40-15 \%, 1000 \mathrm{WV}$	961502000
C227	Click filter	CAPACITOR:	. 02 पff $\pm 20 \%, .600 \mathrm{WV}$	936114900
C301	Aualio amplifier V301, cathode bypass	CAPACITOR:	$20 \mathrm{mf}+100-10 \% ; 100 \mathrm{WV}$	183331000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
C302		$\begin{aligned} & \text { CAPACITQR: } 3 \text { sect; } 0.1 \mathrm{mf} \text { per sect }+40 \\ & -15 \% ; 600 \mathrm{WV} \end{aligned}$	961405900
C302A	Audio amplifier V301, screen bypass	Part of C302	
C3028	Audio amplifier, V301, plate bypass	Part of C302	
C302C	Plate decoupling	Part of C302	
C303	,	CAPACITOR: not used	
C304	Audio coupling capacitor	CAPACITOR: $10,000 \mathrm{mmf} \pm 20 \%$; 300 WV	935211800
C305	Audio coupling \| capacitor	CAPACITOR: $10,000 \mathrm{mmf} \pm 20 \%$; 300 WV	935211800
C306	Filter resonating capacitor	CAPACITOR: $180 \mathrm{mmf} \pm 5 \%$; 500 WV	935011600
C307	Audio filter capacitor	CAPACITOR: $200 \mathrm{mmf} \pm 5 \%$; 500 WV	935011800
C308	Audio filter capacitor	CAPACITCR: $200 \mathrm{mmf} \pm 5 \%$; 500 WV	935011800
C309	Audio amplifier, V302, cathode bypass	CAPACIIOR: $20 \mathrm{mf}+100-10 \%$; 100 WV	183331000
C310	Audio coupling capacitor	CAPACITOR: $0.1 \mathrm{mf}+40-15 \% ; 600 \mathrm{WV}$	961511600
C311	Mod. driver grid return bypass	CAPACITOR: $20{ }^{\circ} \mathrm{mf}+100-10 \%$; 100 WV	183331000
0312	Audio decoupling capacitor	CAPACITOR: $4 \mathrm{mf}+40-15 \%$; 600 WV	961300500
C313	Modulator driver plate decoupling capacitor	CAPACITOR: $4 \mathrm{mf}+40-15 \%$; 600 WV	961300500
c314	Audio decoupling capacitor	CAPACITOR: $4 \mathrm{mf}+40-15 \% ; 600 \mathrm{WV}$	961300500
C315	Moduletor grid bypass capacitor	CAPACITOR: 2200 mmf $\pm 10 \%$; 500 WV	9354067 0

ITEM	circuit function	DESCRIPTION	$\begin{aligned} & \text { COLIITKS } \\ & \text { PART NUMBER } \end{aligned}$
C316	Audio amplifier, V301, v-f bypass	CAPACITOR: $100 \mathrm{mmf} \pm 20 \%$; 500 WV	9350107 ¢
C317	Audio amplifier, V301, cathode bypass	CAPACITOR: 1000 nmit $\pm 20 \%$; 500 WV	935410100
c318	Push to talk RF filter	CAPACITOR: 5000 mmf 500 NV	913118700
C319	Push to talk RF filter	CAPACITIR: 5000 mmf 500 WV	913118700
C401	Bias voltage supply filter	CAPACITOR: 4 mf $+40-15 \%$; 600 WV	961300500
C402	Bias voltage supply filter	CAPACITOR: $4 \mathrm{mf}+40-15 \%$; 600 WV	961300500
C403	L.V. power supply filter	CAPACITOR: $10 \mathrm{mmf} \pm 10 \%$; 1000 WV	930003800
C501	H.V. power supply filter	CAPACITOR: $0.1 \mathrm{mf} \pm 10 \%$; 5000 WV	930004200
*C501		CAPACITOR: $0.15 \mathrm{mf} \pm 10 \%$; 500 WV	930003500
C502	H.V. power supply filter	CAPACITOR: $2 \mathrm{mf} \pm 10 \%$; 4000 WV	930004000
C503	H.V. power supply filter	CAPACITOR: $2 \mathrm{mf} \pm 10 \%$; 4000 WV	930004000
C701	Audio bypass	CAPACITOR: $4 \mathrm{mf}+40-15 \%$; 600 WV	961300500
CR101	Relay Voltage supply rectifier	RECTIFIER: selenium; dry disc; single phase; full wave; input 72 v ac max; output 52 v de max; 6 amp at $35^{\circ} \mathrm{C} ; .4$ amp at $45^{\circ} \mathrm{C}$	353000700
ElO1, El02, E201, E202, E301, E302, E401, E402, E403, E501	Inter unit Connector strips * For equipm	TERMINAL STRIP: black phenolic; barrier type w/ lugs for back connections; 6 term ents using 50 cps power source.	367003700

ITEM	CIRCUIT FUNCTION	description	$\begin{gathered} \text { COLIINS } \\ \text { PART NMBER } \end{gathered}$
		INSULATOR: ceramic male bushing; .200" II hole; $1-1 / 8^{\prime \prime}$ diem x $1-5 / 16^{\text {n }}$ h o/a	190000400
		INSULATOR: ceramic female bushing; .200" ID hole; 1-1/8" diam x 3/4"ho/a	190000800
		famper bar: load coil; bar w/banana plugs $4-3 / 8^{\prime \prime}$ c to c	5023032001
		CAP, TUBE PLATE: spring and connector assem for $4-125 \mathrm{~A}$ tube cap	5028808002
		CAP, TUBE PLATE: ceramic; for $1 / 16^{\prime \prime}$ diam cap	301100500
		CAP, TUBE PLATTE: ceramic; for $3 / 8^{\prime \prime}$ diam cap	301100200
	Plate voltage control knob	kNOB: control; black phenolic w/ skirt; for $1 / 4^{4}$ diam shaft; engravied OP T LV	5029002002
	Fil. voltage adjustment knob	kNoB: control; black phenolic w/ skirt; for $1 / 4^{\prime \prime}$ diam shaft; engraved 321	5029003002
	Phone-CW Selector switch knob	kNOB: control; black phenolic w/ skirt; for $1 / 4^{\prime \prime}$ diam shaft; engraved PH CW	5029004002
	Audio gain control knob	kNoB: control; black phenolic w/skirt; for $1 / 4^{\prime \prime}$ diam shaft; engraved 10 to 0	5029005002
	Exciter tuning knobs	KNOB: tuning; black bakelite w/ skirt; for $1 / 4$ " diam shaft; engraved 100 to 0	5033041002
	PA and Output network tuning knobs	KNOB: tuning; black phenolic w/ skirt; for $1 / 4^{\prime \prime}$ diam shaft; engraved 100 to 0	281003900
		KNOB: pointer; black phenolic; for $1 / 4$." diam shaft; engraved indicator line	281108000
	Channel selector knob	krob: black phenolic; for 1/4" diam shaft;	281000200
$\begin{gathered} \text { F101, } \\ \text { F102 } \end{gathered}$	Supply line fuse Supply line fuse	$\begin{aligned} & \text { FUSE: plug; } 20 \text { amp; } \\ & 125 \text { v } \end{aligned}$	264120000
F103	Relay Voltage Supply fuse	FUSE: cartridge; 2 amp; 250 v	264407000
P201	Exciter filament Supply fuse	FUSE: slow blow; cartriage; 1/2 amp; 250 v ;	264426000

ITEM	CIRCUIT FUNCTION	DESCRIPTION	$\begin{aligned} & \text { COLLINS } \\ & \text { PART NUMBER } \end{aligned}$
F301	Mod. driver filament supply fuse	FUSE: slow blow; cartridge; $1 / 2 \mathrm{amp}$; 250 v	264426000
F401	Bias voltage supply fuse	FUSE: slow blow; cartridge; $1 / 2 \mathrm{amp}$ 250 v	264426000
F402	L.V. supply fuse	FUSE: cartridge; $3 \mathrm{amp} ; 250$	264408000
F403	Modulator and R-F amplifier fila. ment supply fuse	FUSE: cartridge; 2 amp ; 250 v	264407000
F501	H.V. rectifier	FUSE: slow blow; cartridge; l amp; 250 v	264428000
I101	Filament power	BULB: pilot light; 125 v ; $.040 \mathrm{amp} ; 6 \mathrm{w}$; candelabra base	262332000
1102	Plate power indicator		
I2O1	Transient suppressor	BULB: Neon; min bayonet base, T-3-1/4, 1/25 w	262002100
J101	Key jack	JACK: Phone, midget, 1 circuit	358104000
J301	Microphone or audio connector	CONNECTOR: wall mtg; 4 contact	369900000
K201	Keying control relay	RELAY: sensitive; $12-24 \mathrm{ma}$; 24.43 v	408700000
K202	Exciter channel selector relay	$\begin{aligned} & \text { RELAY: RF circ control; DPDT; } 48 \mathrm{v} \text { dc } \\ & \text { COIl } \end{aligned}$	407100500
K203	Exciter channel selector relay	RELAY: RF circ control; DPDT; 48 v dc coil	407100500
K204	R-F power amplifier channel selector relay	RELAY: rotary; 2 pos; 300 wafer switch driving 48 v de coil	410002600
K205	Output network channel selector relay	RELAY: RF circ control: DPDT cont w/ SPDT aux; 48 v de coll	407100600
K206	Crystal select relay	RELAY: RF circ control; DPDT; 48 v dc coil	407100500
K207	Antenna change over	RELAY: circuit control, 5 amp cont	407100000
K208	Antenna change over	ReIAY: circuit control, 5 amp cont	407100000
K301	PH-CW phone	RELAY: circ control; DPDT; 48 v de coll	407610000

* Choose coils for frequency desired. (See coil chart in Installation Section)

ITEM	CIRCUIT FUNCTION	DESCRIPIION	COLITNS PART NUMBER
209	V203, RF power amplifier grid choke	COIL: $9-1 / 2$ turns \#24 bus; 8.0-10.5 mc;	5033833003
		COIL: 8 turns \#24 bus; 10.5-14.0 me; shield can $2^{\prime \prime}$ sq $\times 4^{\prime \prime} \mathrm{h}$; med 7 pin base	5033834003
		COIL: 5 turns \#24 bus; 14-18 me; shield can $2^{\prime \prime} \mathrm{sq} \times 4^{\prime \prime} \mathrm{h}$; med 7 pin base	5033835003
		COIL: 5 turns \#16 bus; $18-24 \mathrm{mc}$; shield can $2^{\prime \prime} \mathrm{sq} \times 4^{\prime \prime} \mathrm{h}$; med 7 pin base	5033836003
		COIL: 5 turns \#16 bus; 24-30 mc; shield can 2" sq $\times 4^{\prime \prime} \mathrm{h}$; med 7 pin base	5033837003
		COIL: RF choke; 4 pl ; duo-lateral wound; 2.5 mh ; . $125 \mathrm{amp} ; 50 \mathrm{ohm}$ max	240530000
$\begin{aligned} & \text { *I210 } \\ & \text { and } \\ & \text { *I211 } \end{aligned}$	V203, Rp power amplifier plate supply choke	COIL: RF choke; 2-10.5 mc; 300 uh ; \#24 DSC double bend wound on ceramic form $1^{\prime \prime}$ diam $\times 7^{\prime \prime}$ lg. bamana pluge $6-1 / 2^{\prime \prime} \mathrm{c}$ to c	5033821002
		COIL: RF choke; $6-18 \mathrm{mc}$; $96 \mathrm{uh} ; \# 24$ enam aingle layer wound on ceramic form 1" diam x $7^{\prime \prime} 1 \mathrm{~g}$; banana plugs $6-1 / 2^{\prime \prime} c$ to c	5033822002
		COIL: RF choke; 10-30 mc; 53 uh \# 24 enam, single layer wound on ceramic form $1^{\prime \prime}$ diam x 6-1/2" c to c	5033823002
$\begin{aligned} & \text { *I212 } \\ & \text { and } \\ & \text { *I213 } \end{aligned}$	RF power amplifier output tank inductor	COIL: tank; $46 T$ \#14 bus on ceramic form $2-1 / 2^{\prime \prime}$ diam x $6^{\prime \prime}$ 1g; sliding coil rider; mycalex mtg plate w/ 4 banana plugs on st Iine 1-1/4"	5033838003
		COIL: tank, $24 \mathrm{~T} \# 12$ bus on ceramic form 2-1/2" dam x $6^{\prime \prime} 1 \mathrm{~g}$; sliding coil rider; mycalex mtg plate w/ 4 banana plugs on st line 1-1/4"	5033839003
		COIL: tank; $12 T$ \#12 bus on ceramic form 2-1/2" diam x $6^{\prime \prime} 1 \mathrm{~g}$; sliding coil rider; mycalex mtg plate w/ 3 banana plugs on st line	5033840003
		COIL: tenk; $8 T$ \#10 bus on ceramic form 2-1/2" diem x $6^{\prime \prime} 1 \mathrm{~g}$; sliding coil rider; mycalex mtg plate w/ 2 banana plugs	5033841003
		COIL: tank; 6 T l/2" wd copper ribbon, wound 2" diam x 5-1/2" lg; shorting bar on T \#4; mycalex mtg plate w/ 2 banana plugs	5033812003

[^0]
6-8

ITEM	CIRCUIT FUNCIION	DESCRIPPION	COLLINS PART NUMBER
1214, $L 215$	Static drain choke	COIL: RF choke; $1 \mathrm{mh} \pm 10 \%$ \% 0.6 amp	240260000
**L216	Iow frequency load ing inductor	COIL: load; 46 T \#14 bus on ceramic form 2 $1 / 2^{\prime \prime}$ diam $\times 6^{\prime \prime} l_{g}$; sliding coil rider; mycalex mtg plate w/ 2 banana plugs	5033843003
**L217	Low frequency loading inductor	COIL: load; $46 \mathrm{~T} \# 14$ bus on ceramic form 2-1/2" diam x 6" lg; sliding coil rider; mycalex mtg plate w/ 2 banana plugs	5033843003
1220	Click filter	REACTOR: filter, $8.5 \mathrm{hy} 0.035 \mathrm{amp}+20 \%-$ $0 \% 120 \mathrm{cps}, 2500 \mathrm{TV}$	678153100
L301	Audio filter reactor	REACTOR: audio; 3.75 hy ; 1000 rms TV ; 100 $5000 \mathrm{cps} ;$ case $2-1 / 4^{\prime \prime} \times 1-1 / 2^{\prime \prime} \times 2^{\prime \prime} \mathrm{h} ; 2$ mtg holes $1.880^{\prime \prime} \mathrm{c}$ to $\mathrm{c} ; 2$ solder post term	678007700
1302	Audio amplifier V301, grid choke	COIL: RF choke; $2.7 \mathrm{uh} ; 300 \mathrm{ma}$; form $0.170^{\prime \prime}$ diam $\times 5 / 8^{\prime \prime} \mathrm{lg}$; axial leads	240001200
I401	Bias supply filter	REACTOR: filter; 12 hy; $75 \mathrm{ma} ; 2500 \mathrm{rms}$ TV; 120 cps; 275 ohms	678007500
L402	L.V. power supply filter	REACTOR: Pilter; 6 hy; $250 \mathrm{ma} ; 2500 \mathrm{rms}$ (TV; $120 \mathrm{cps} ; 62$ ohms	678007600
$\begin{aligned} & \mathrm{L} 501, \\ & \mathrm{~L} 502 \end{aligned}$	H.V. power supply filter	REACTOR: filter; 12 hy; $300 \mathrm{ma} ; 10,000 \mathrm{rms}$ TV; resonates at $120 \mathrm{cps} \mathrm{w} / .1 \mathrm{mf}$ capacitor and 30 ma de load;	678008100
M101	Power amplifier plate current meter	MEITER: $\quad 0-300 \mathrm{ma} \mathrm{dc} ; 30$ scale div, 10 ma per div;	450003100
M102	```Power amplifier grid current meter```	MEIER: $0-25 \mathrm{ma}$ dc; 2% accuracy	450002900
M103	Filament voltage meter	MEIER: $0-10 \mathrm{vac} ; 2 \%$ accuracy	452000600
M104	Modulator plate current meter	MEIER: $0-200 \mathrm{~ms} \mathrm{dc} ; 40$ scale div, 5 ma per div	450003000
M105	AAntenna current	MEIER: $0-3$ amp RF; 30 scale div, . 1 amp per div; int thermocouple	451001800
M106	Antenna current meter ** For low fr	METER: $0-3$ amp RF; 30 scale div, . 1 amp per div; int thermocouple requency operation	451001800

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COLLINS PART NUMBER
M2O1	Multiplier grid current meter	MEIER: $0-10 \mathrm{ma}$ dc; 50 scale div, .2 ma per div	450004900
P301	Microphone connector	CONNECTOR: cable; 4 contact	369810000
101	Plate transformer series resistor for tuning	RESISTOR: heater; 660 w ; 115 v ; conical form med Edison base	711000300
R102	Relay voltage supply bleeder resistor	RESISTOR: 1000 ohm $\pm 10 \%$; 10 w	710114200
R201	Oscillator, V2O1, grid resistor	RESISTOR: 47,000 ohm $\pm 10 \%$; 1 w	745315600
R202	Oscillator, V201, cathode resistor	RESISTOR: 470 ohm $\pm 10 \%$; 2 w	745507200
R203	Oscillator, V2O1, screen resistor	RESISTOR: 20,000 ohm $\pm 10 \%$; 10 w	710120420
R2O4	Multiplier, V202, grid resistor	RESISTOR: 47,000 ohm $\pm 10 \%$; 2 w	745515600
R205	Multiplier, V202, cathode resistor	RESISTCR: 500 ohm $\pm 10 \%, 10 \mathrm{w}$	710150020
R206	Multiplier, V202, screen dropping resistor	RESISTOR: 47 ohm $\pm 10 \%$; 1 w	7453030 00
R207	RF power amplifier V203, Erid resistor	RESISTCR: 5000 ohm $\pm 10 \%$; 25 w	710354200
R208	RF power amplifier V203, screen dropping resistor	RESISTOR: 5000 ohm $\pm 10 \% ; 50 \mathrm{w}$	710454200
R209	Hxciter screen voltage divider resistor	RESISTOR: 7500 ohm 土10\%; 25 w	710006900
R210	Exciter screen voltage divider resistor	RESISTCR: 2500 ohm $\pm 10 \%$; 25 w	710006600
$\begin{aligned} & \text { R2111 } \\ & \text { R212 } \end{aligned}$	PA drive control	RESISTOR: 1000 ohm $\pm 10 \%$; 10 w	710124200

6-10

ITEM	CIRCUIT FUNCTION		DESCRIPTION	COLLINS PART NUMBER
R213, R214	PA drive control	RESISTOR	500 ohm $\pm 10 \%$; 10 w	710150020
$\begin{aligned} & \text { R215, } \\ & \text { R216 } \end{aligned}$	PA drive control	RESISTOR	1500 ohm $\pm 10 \%$; 10 w	710002700
R301		RESISTOR	not used	
R302	Audio amplifier, V301, grid resistor	RESISTOR	1.0 megohm $\pm 10 \% ; 1 / 2 \mathrm{w}$	745121200
R303	Audio amplifier, V301, cathode resistor	RESISTOR	1000 ohr $\pm 10 \% ; 1 / 2 \mathrm{w}$	745108600
R304	Audio amplifier, V301, screen resistor	RESISTOR	47 megohm $\pm 10 \%$; $1 / 2 \mathrm{~W}$	745119800
R305	Audio amplifier, V301, plate resistor	RESISTOR	. 10 megohm $\pm 10 \%$; 1 w	745317000
R306	Audio gain control	RESISTOR	. 50 megohm; 1/w; 350 v max	376302700
R307	Audio amplifier, V302, cathode resistor	RESISTOR	1000 ohm $\pm 10 \%$; 1 W	745308600
R308	Audio amplifier, V302, plate resistor	RESISTOR	47,000 ohm $\pm 10 \% ; 2 \mathrm{w}$	745515600
R309	$\begin{aligned} & \text { Audio equalizing } \\ & \text { resistor } \end{aligned}$	RESISTOR	. 10 megohm $\pm 10 \%$; $1 / 2 \mathrm{w}$	745117000
R310	Auaio amplifier, V302, grid resistor	RESISTOR	. 10 megohm $\pm 10 \%$; 1 w	745317000
R311	Audio amplifier, V302, cathode voltage divider	RESISTOR	620 ohm $\pm 5 \%$; 1 W	745307700
R312	Audio amplifier V302, cathode voltage divider	RESISTOR	$620 \mathrm{ohm} \pm 5 \%$; 1 w	745307700
R313	Audio emplifier, V302, cathode voltage divider	RESISTOR	330 ohm $\pm 10 \%$; 1 w	745306500

ITEM	CIRCUIT FUTCIIION	DESCRIPIION	COLLTNS PART NUMBER
R314	Audio anplifier; V302, plate resistor	RESISTOR: 47,000 ohm $\pm 10 \%$; 2 w	745515600
R315	Peak clipping control	RESISTOR: 100,000 ohm potentiometer; 1/2	376002100
R316	Mod driver, V304, bias resistor	RESISTOR: $750 \mathrm{ohm} \pm 10 \%$; 10 w	710175020
R317	Audio input amplifier, V301, decoupling resistor	RESISTOR: 47,000 ohm $\pm 10 \%$; 1 w	745315600
318	Mod driver decoupling resistor	RESISTOR: 4000 ohm $\pm 10 \%$; 50 w	710444200
R319	Plate decoupling resistor	RESISTOR: 20,000 ohm $\pm 10 \%$; 10 w	710120420
R320	Plate decoupling resistor	RESISTOR: 4700 obm $\pm 10 \%$; 2 w	745511400
R401	Modulator bias control	RESISTOR: 750 ohm $\pm 10 \%$; 25 w	735000200
R402	Bias supply voltage divider	RESISTOR: 500 ohm $\pm 10 \%$; 10 W	710150020
R403	Bias supply voltage divider	RESISTOR: 1000 ohm $\pm 10 \%$; 10 w	710114200
R404	L.V. power supply bleeder	RESISTOR: 25,000 ohm $\pm 10 \%$; 50 w	710425420
R405		RESISTOR: 1250 ohm $\pm 10 \%$; 10	710002400
R501	H.V. power supply bleeder resistor	RESISTOR: 25,000 ohm $\pm 10 \%$; 50 W	171425420
R502	H.V. power supply bleeder resistor	RESISTOR: 25,000 ohm $\pm 10 \%$; 50 w	710425420
R503	H.V. power supply bleeder resistor	RESISTOR: 25,000 ohm $\pm 20 \%$; 50 W	710425420
R504	H.V. power supply bleeder resistor	RESISTOR: 25,000 ohm $\pm 10 \%$; 50 W	710425420
Sl01	Test key switch	$\begin{aligned} & \text { SWITCH: lever; contacts IA IA and IA IA; } \\ & 110 \vee 60 \text { cyc ac non-ind } \end{aligned}$	375004900
S102	Channel selector switch	SWITCH: tap; 2 circ; 2 pos	259023900

ITEM	CIRCUIT FUNCTION	DESCRIPIION	COLJINS PART NUMBER
S103	Local-Remote control switch	SWITCH: lever; contacts $2 C 2 C$ and $2 C 2 C$; 110 v 60 cyc ac non-ind	375002500
S104	Filament voltage control switch	SWIICH: tap; single circ; 30 pos	259118000
S105	Filament power ON-OFF switch	SWITCH: toggle; SPST	266300500
S106	Plate power ON-OFF switch	SWITCH: toggle; SPST	266300500
S107	Plate voltage control switch	SWITCH: tap; single circ; 3 pos	259118000
S108	Door interlock switch	SWITCH: push button, NO interlock	266000300
S109	Emission selector	SWITCH: tap; 2 circ; 2 pos	259023900
T101	H.V. power supply plate transformer	TRANSFORMER: plate; pri \#1; 115 v ; pri \#2: 115 v ; sec \#1: $2365 / 2950 \mathrm{v}$; CT; sec \#2: 2365/2950 v	662001500
T102	Relay voltage supply transformer	TRANSFORMER: power; pri; 115 v ; sec: $72 / 67 / 62 \mathrm{v}$; . 58 amp	674015300
T103	Modulation transformer	PRANSFORMER: mod; pri; 32,000 ohm CT, sec \#1: 16,700 ohm, sec \#2: 248 v RMS	677031600
T201	Exciter filament transformer	TRANSFORMER: fil; pri: 115 v ; sec: 6.3 v CT, 3 amp	672006900
T301	Modulator driver transformer	TRANSFORMER: driver; pri: 2500 ohm; 60 ma bal; sec: 15,000 ohm CT: 100-5000 cps $\pm 1-1 / 2 \mathrm{db}$	677007400
T302		NOT used	
T303	```Modulator driver filament transfor- mer```	TIRANSFORMER: fil; pri: 115 v ; sec: 6.3 v CT, 3 amp	672006900
T401	Bias voltage supply transformer	TRANSFORMER: LV; 50/60 cps; pri: 115 v ; sec \#1: $5 \mathrm{v} ; 2 \mathrm{amp} ; \sec \# 2 ; 5 \mathrm{v} ; 2 \mathrm{amp} ;$ sec \#3: $420 \mathrm{v} \mathrm{CT} ; 1 \mathrm{amp}$	672006800
T402	I.V. power supply transformer	TRANSFORMER: LV; $50 / 60 \mathrm{cps} ;$ pri: 105/ 115/125 v sec: $1320 \mathrm{vCT} ; .177$ amp	672008000
T403	Modulator and R rr power amplifier filament trans former	ITRANSFGRMER: amp fil; $50 / 60 \mathrm{cpa} ; \mathrm{pri}:$ 105/110/115 v; sec: 5 v CT; 20 amp	672007200

ITEM	CIRCUIT FUNCTION	DESCRIPIION	COLLINS PART NUMBER
T501	H.V. rectifier fil- ament transformer	TRANSFORMER: rect fil; $50 / 60 \mathrm{cps} ;$ pri: $105 / 110 / 115 \mathrm{v}$; sec: 2.5 v ; 10 amp	672007900
V201	Oscillator	TUBE: $6 \mathrm{~V} 6 \mathrm{GT} / \mathrm{G}$; beam power amplifier	255003100
v202	Multiplier	TIUBE: 807; transmitting beam pwx amplifier	256003300
V203	R-F power amplifier	TUBE: 4-125A; power tetrode	256006800
V301	Audio amplifier	TUBE: 6SJ7; triple-grid detector amplifier	255003000
V302	Audio amplifier	TUBE: 6SN7GT; twin-triode amplifier	255003300
V303	Audio peak clipper	TUBE: 6H6; twin-diode	255011700
V304	Modulator driver	TUBE: 6B4G; power amplifier triode	255012400
V̇305	Modulator	TUBE: 75th; medium-mutriode	256007100
V306	Modulator	TUBE: 75th; medium-mutriode	256007100
V401	Bias supply ! rectifier	TUBE: $5 R 4 G Y ;$ full-wave high-vacuum rectifier	257002000
V402	L.V. supply rectifier	TUBE: 5R4GY; full-wave high-vacuum rectifier	257002000
V501	H.V. supply rectifier	TUBE: 866A; half-wave mercury-vapor rectifier	256004900
V502	lit.v. supply rectifier	TUBE: 866A; half-wave mercury-vapor rectifier	256004900
$\begin{aligned} & \mathrm{XF} 101 \\ & \mathrm{XF} 102 \end{aligned}$	Socket for F1O1 and F102	RECEPTACIE: fuse plug; 2 pole; 30 amp 125 v	265101300
XFIO3 XF2O1	Holder for F103,F20	HOLDER: fuse cartridge; $1 / 2-24$ thd mtg bushing; 11/16" diam x 2-7/16" lg o/a;	265100200
XF301	F301, F201	lug terms	
XF401	F401, F201		
XF402	- F402, F201		
XF403	F403, F201		
XF501	F501, F201		
$\begin{aligned} & \text { XII01 } \\ & \text { XIIO2 } \end{aligned}$	$\begin{aligned} & \text { Socket for Il01, } \\ & \text { Ilo2 } \end{aligned}$	HOLDER: pilot light mtg; for candelabra base bulbs; frosted jewel l" diam; 1"27 thd bushing $1 / 2^{\prime \prime} 1 g ; 1-5 / 16^{\prime \prime}$ diam x 2-3/4" lg o/a	262003300
	Disc for Il01	DISC: pilot light; green DISC: pilot light; red	$\begin{aligned} & 262237000 \\ & 262236000 \end{aligned}$

ITEM	CIRCUIT FUNCTION	DESCRIPIION	COLLINS PART NUMBER
XI201	Socket for 1201	MOUNTING: Pilot light, min bayonet	262126000
XI203	Socket for 1203	SOKET: med 7 contact w/ clips; ceramic;	220573000
XI204	Socket for L204	1-49/64" mtg/c	
XI207	Socket for L207		
XI208	Socket for 1208		
XI209		SOCKEIT: not used	
XI210	Socket for 1210	JACK STANDOFF: $1-9 / 16^{\prime \prime} \mathrm{h}$ ceramin stand-	190113200
XL211	Socket for L211	off w/ banena jack; 1-5/16" mtg/c (reg 2 per coil)	
XL212	Socket for 1212	JACK ASSEMBLY:	
XI213	Socket for L213	PLATE: $1 / 4^{\prime \prime}$ thk mycalex; $2^{\prime \prime}$ wd $\times 8-3 / 8^{\prime \prime}$ lg w/ 2 jack mtg holes $4-3 / 8^{\prime \prime} \mathrm{c}$ to c	5033046002
		JACK: jumbo banana; 9/32" ID; 9/16" hex $\times 7 / 8$ " $\lg \mathrm{o} / \mathrm{a}$; 3/8-24 thd	360203000
XL214	Socket for LOAD COIL	JACK ASSEMBLY:	
XI215	Socket for LOAD COIL	PLATE: $1 / 4^{\prime \prime}$ thk mycalex; $2^{\prime \prime}$ wd x 8-3/8" $\lg \mathrm{w} / 4$ jack mtg holes $1-1 / 4^{\prime \prime}, 3-1 / 2^{\prime \prime}$, $4-3 / 8^{\prime \prime} c$ to c on st line	5033047002
		$\begin{aligned} & \text { JACK: jumbo banana; 9/32" ID; } 9 / 16^{\prime \prime} \text { hex } \\ & \times 7 / 8 " \mathrm{Ig} \text { o/a; } 3 / 8-24 \text { thd } \end{aligned}$	
XR101	Socket for R101	SOCKET: screw type; $660 \mathrm{v}: 660 \mathrm{w}$; porcelain 1-5/8" wa x 2-3/8" $1 \mathrm{~g} \times 1-5 / 8^{\prime \prime} \mathrm{h}$; mtg holes $1-13 / 16^{\prime \prime} \mathrm{c}$ to c	$265 i 01000$
XV201	Socket for V201	SOCKET: tuibe; std octal; bakelite $\mathrm{w} / \mathrm{mtg}$ plate; $1.312^{\prime \prime} \mathrm{mtg} / \mathrm{c}$	220100500
XV202	Socket for V202	SOCKET: tube; 5 prong w/ clips; ceramic; 2 mtg holes $1-49 / 64^{\prime \prime} \mathrm{c}$ to c	$\text { 220 } 552000$
XV203	Socket for V203	SOCKET: tube; 5 prong $\mathrm{w} / \mathrm{clips}$; ceranic; $2-1 / 4^{\prime \prime} \times 2-1 / 4^{" 1} \mathrm{mtg} / \mathrm{c}$	$22010,2600$
XV301	Socket for V301	Socker: tube; std octal; bakelite w/ inte	220100500
XV302	Socket for V302	plate; 1.312" mtg/c	
XV303	Socket for V303		
XV304	Socket for V304		
XV305. xv306	Socket for V305 Socket for V306	SOCKET: tube; 4 prong w/ clips; ceramic; 2 mtg holes $1-49 / 644 \mathrm{c}$ to c	220545000
XV401 xV402	Socket for V401 Socket for V402	SOCKET: tube; std octal; bakelite w/ mtg plate; 1.312" mtg/c	220100500

ITEM	CIRCUIT FUNCTION	DESCRIPTION	COTJTHS PART NUMBER
$\begin{aligned} & \text { XV501 } \\ & \text { XV502 } \end{aligned}$	Socket for V501 Socket for V502	SOCKIN: tube; 4 prong w/ clips; ceramic; 2 mtg holes $1-49 / 64^{\prime \prime} \mathrm{c}$ to c	220545000
XY201 XY202	Socket for YOOL and Y202	SOCKEI: crystal; dual 3 pin w/ clips; ceramic; $1^{\prime \prime} \times 4-1 / 8^{\prime \prime} \mathrm{mtg} / \mathrm{c}$	220813000
$\begin{aligned} & \text { Y2O1 } \\ & \text { Y202 } \end{aligned}$	Frequency control	CRYSTAL: frequency individually chosen within range 1.5 to 5 mc . See maintenance section 5.4	$\begin{array}{ll} 291 & 414900 \\ & \text { thrus } \\ 291 & 464800 \end{array}$
175V-2	RELAY CONITROL UNIT		
C701	Remote line capacitor	CAPACITOR: $4 \mathrm{mf}+40-15 \% ; 600 \mathrm{WV}$	961300500
$\begin{aligned} & \text { E7O1, } \\ & \text { E7O2 } \end{aligned}$	Connector strip	```TERMINAL STRIP: Black phenolic; barrier type with lugs for back connections; 6 term```	367003700
		KNOB: Pointer; black phenolic; for 1/4" diam shaft; engraved indicator line	281108000
J701	Audio connector	CONNECTOR: Hall mtg; pressure type cont for single cond shielded cable	369100800
K701	Auxiliary filament power control	RELAY: Circ control; DPST; NO; 50 v coll	407100400
K702	Aux. pl pwr control	RELAY: Circ control; DPST; NO; 50 v coil	407100400
P701	Audio connector	CONNECTOR: Plug; for single cond shielded cable $1 / 4^{\prime \prime}$ OD max	369100600
R701	Audio input level adjustment	RESISTOR: 100 ohm potentiometer; . 20 amp; 4 W	377003600
R702	Audio pad	RESISTOR: 470 ohm $\pm 10 \%$; 1 W	745307200
T701	Control lines trans former	TRANSFORMER: Audio; pri; 600 ohm CT; sec; $600 \mathrm{ohm} 100-4000 \mathrm{cps} \pm 1 \mathrm{db}$	677015600
177L-2	REMOIE UNIT		
C801	Aurio amplifier, V801, Brid capacitor	CAPACITOR: $100 \mathrm{mmf} \pm 20 \%$; 500 WV	935010700
C802	Auado amplifier V801, cathode bypass	CAPACITOR: 1000 mmf $\pm 20 \% ; 500 \mathrm{WV}$	935410100
C803	Audio amplifier, V801, cathode bypass	CAPACITOR: 4 mf $\pm 40-15 \% ; 600 \mathrm{WV}$	961300500

[^0]: * Choose coils for frequency desired. (See coil chart in Installation Section)

